

SYLLABUS

Software Systems Verification and Validation

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution Babes-Bolyai University

1.2. Faculty Faculty of Mathematics and Computer Science

1.3. Department Computer Science

1.4. Field of study Computer Science

1.5. Study cycle Bachelor

1.6. Study programme/Qualification Computer Science

1.7. Form of education Full time

2. Information regarding the discipline

2.1. Name of the discipline Software Systems Verification and Validation Discipline code MLE5014

2.2. Course coordinator PhD Associate Professor Vescan Andreea

2.3. Seminar coordinator PhD Associate Professor Vescan Andreea

2.4. Year of study 3 2.5. Semester 6 2.6. Type of evaluation E 2.7. Discipline regime Optional

3. Total estimated time (hours/semester of didactic activities)

4. Prerequisites (if necessary)

4.1. curriculum
• Object oriented programming, Advanced programming methods, Systems for

design and implementation, Web Programming

4.2. competencies • Skills in highlevel object oriented programming environments

5. Conditions (if necessary)

5.1. for the course Video projector, Internet access

5.2. for the seminar /lab activities Laboratory with computers; various tools for verification activities

6.1. Specific competencies acquired 1

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

3.1. Hours per week 3 of which: 3.2 course 2
3.3
seminar/laboratory/project

1

3.4. Total hours in the curriculum 36 of which: 3.5 course 24
3.6
seminar/laboratory/project

12

Time allotment for individual study (ID) and self-study activities (SA) hours

Learning using manual, course support, bibliography, course notes (SA) 24

Additional documentation (in libraries, on electronic platforms, field documentation) 24

Preparation for seminars/labs, homework, papers, portfolios and essays 24

Tutorship 7

Evaluations 10

Other activities: 0

3.7. Total individual study hours 89

3.8. Total hours per semester 125

3.9. Number of ECTS credits 5

P
ro

fe
ss

io
n

a
l/

e
ss

e
n

ti
a

l
co

m
p

e
te

n
ci

e
s

• advanced programming skills in high-level programming languages
• development and maintenance of software systems
• use of software tools in an interdisciplinary context

T
ra

n
sv

e
rs

a
l

co
m

p
e

te
n

ci
e

s

• efficient development of organized activities in an interdisciplinary group and the development of
empathetic abilities for interpersonal communications, to relate to and cooperate with various groups

• efficient development of organized activities in an interdisciplinary group and the development of
empathetic abilities for interpersonal communications, to relate to and cooperate with various groups

6.2. Learning outcomes

K
n

o
w

le
d

g
e

The student knows:
• The graduate has adequate knowledge related to the use of integrated development environments for

creating large complex applications.
• • The graduate is familiar with traditional and agile development methodologies.

S
k

il
ls

The student is able to:
• The graduate has the ability to create automated tests of different levels of granularity for quality

assurance of the developed systems.
• The graduate is familiar with tools used for testing, debugging, validating software applications.
• The graduate is familiar with methods for testing and verifying software systems.
• The graduate is familiar with project management tools, version control systems, and continuous

integration/continuous delivery (CI/CD) concepts, methods, tools.

R
e

sp
o

n
si

b
il

it
y

a

n
d

 a
u

to
n

o
m

y
:

The student has the ability to work independently to obtain:
• The graduate has the ability to understand and communicate information effectively.
• The graduate has the ability to observe and obtain information from various sources.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

• To gain knowledge of partial correct and total correct algorithms

• To gain knowledge of designing correct algorithms and proving the

correctness hand-in-hand;

• To learn the methods of program verification and validation;

• To become used with building correct programs from specification;

• To develop a modern programming style.

7.2 Specific objective of the
discipline

• Students will know how and which are the steps of an inspection,

either of the source code or specification of each stage of the

development of the software system.

• Students will know to create test cases from the specification and

from source code, that will help them develop a better and robust

software system.

• Students will know how to use tools for the management of testing

process.

• Students will know how to design test cases using various criteria

(black-box, white-box).

8. Content

8.1 Course Teaching methods Remarks

1. Verification and validation.

Program inspection

Interactive exposure

Explanation

Conversation

Didactical demonstration

Program testing (1): the concept of

program testing; unit testing: testing

criteria – black box testing,

Interactive exposure

Explanation

Conversation

Didactical demonstration

Program testing (2): the concept of

program testing; unit testing: testing

criteria – white box testing (cont.)

Interactive exposure

Explanation

Conversation

Didactical demonstration

Program testing (3): Levels of testing

(unit, integration, system, regression,

acceptance)

Interactive exposure

Explanation

Conversation

Didactical demonstration

Testing Web applications Interactive exposure

Explanation

Conversation

Didactical demonstration

Agile testing. Script testing versus

exploratory testing

Interactive exposure

Explanation

Conversation

Didactical demonstration

Symbolic execution Interactive exposure

Explanation

Conversation

Didactical demonstration

Model checking

Interactive exposure

Explanation

Conversation

Didactical demonstration

The theory of program correctness.

The evolution of the concept of program

correctness.

Floyd’s method for prooving correctness.

Hoare’s axiomatisation method

Interactive exposure

Explanation

Conversation

Didactical demonstration

Dijkstra: the weakest

precondition.Stepwise refinement from

specifications

Program Quality Interactive exposure

Explanation

Conversation

Didactical demonstration

Verification/testing related activities:

Technical testing skills, Soft testing

skills, Giving, feedback. This activity is

done in collaboration of the teacher with

the students.

Interactive exposure

Explanation

Conversation

Didactical demonstration

Final exam preparation. Interactive exposure

Explanation

Conversation

Didactical demonstration

Bibliography

Bibliography

Books

[Fre10] FRENTIU, M., Verificarea si validarea sistemelor soft, Presa Universitara Clujeana, 2010

[Pres10] R. S. Pressman, Software engineering: a practinioner’s approach, seventh edition, Higher

Education, 2010

[Crs09] L. Crispin, J. Grecory, Agile testing: a practical guide for testers and agile teams, Addison-Wesley,

2009

[You08] M. Pezzand, M. Young, Software Testing and Analysis: Process, Principles and Techniques, John

Wiley & Sons, 2008

[Nai08] K. Naik, P. Tripathy, Software testing and quality assurance. Theory and Practice, A John Wiley &

Sons, Inc., 2008

[Kat08] J. P. Katoen, Principles of Model Checking, MIT Press, May 2008

[Pat05] R. Patton, Software Testing, Sams Publishing, 2005

[Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004

[Brn02] I. Brnstein, Practical software testing, Springer, 2002

[Mor90] Morgan, C., Programing from Specifications, Prentice Hall, NewYork, 1990.

[Dro89] DROMEY G., Program Derivation. The Development of Programs From Specifications, Addison

Wesley Publishing Company, 1989.

Articles

[Kin75] J. Darringer, J. King, Applications of symbolic execution to program testing, 1975

 [Dij75] DIJKSTRA, E., Guarded commands, nondeterminacy and formal derivation of programs, CACM,

18(1975), 8, pg.453-457.

[Hoa69] HOARE, C.A.R., An axiomatic basis for computer programming, CACM, 12(1969), pg.576-580,

583.

Tutorials

During lectures/seminars/laboratories tutorials will be given for each assignment.

8.2 Seminar / laboratory Teaching methods Remarks

Seminar 1/Laboratory 1

Inspection

 Inspection tool

Presentation, Conversation,

Problematizations, Discovery,

Other methods – individual

study, exercises

Seminar 2/Laboratory 2

Test cases using Black-box

Testing (BBT)

 Continuous Integration tool

(Jenkins)

Presentation, Conversation,

Problematizations, Discovery,

Other methods – individual

study, exercises

Seminar 3/Laboratory 3

Test cases using White-box Testing

(WBT)

Continuous Integration tool (Jenkins)

Presentation, Conversation,

Problematizations, Discovery,

Other methods – individual

study, exercises

Seminar 4/Laboratory 4

Levels of testing - Integration testing

Continuous Integration tool (Jenkins)

Presentation, Conversation,

Problematizations, Discovery,

Other methods – individual

study, exercises

Seminar 5/Laboratory 5

Web testing

Web testing tool (e.g. Selenium Web

Driver)

Continuous Integration tool (Jenkins)

Presentation, Conversation,

Problematizations, Discovery,

Other methods – individual

study, exercises

Seminar 6/Laboratory 6

Correctness. Static analysis

ESCJava2, JML

Presentation, Conversation,

Problematizations, Discovery,

Other methods – individual

study, exercises

Bibliography

See references from Lectures.

Remark. For each seminar, students must be prepared. Various articles/chapters from books are required

to be read previous to each seminar.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

• Students will know how to use tools for test management

• Students will know how to apply testing methods for a software product.

• Students will learn various verification and validation methods of a software system, to design test

cases using various criteria (black-box testing, white-box testing)

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.1 Course

At the end of the

semester a written

examination will give a

mark E.

Written examination 50%

10.2 Seminar/laboratory

The activity at

seminaries, consisting

from participation in

solving the exercises

and discussions will

Seminar =

Grade for seminar

Activity

25%

be appreciate by a

mark S.

The activity at

laboratories, consisting

from participation in

solving the exercises

and discussions, will

be appreciate by a

mark L.

Laboratory

activity

25%

10.3 Bonus point

Students will have the

possibility of obtaining

bonus points at the final

grade for additional

activities that are

related to Software

systems verification and

validation: conduction

research/report and

various activities during

lectures.

An R&D project could

also be selected.

Bonus points

Bonus points at the final

grade (after obtaining the

final minimum required

grade 5).

Remark .

• Seminar/Laboratory assignments/Practical laboratory work may not be redone in the retake

session.

• Written exams can be taken during the retake session.

• Students from Previous Years to the current academic year

o All the above rules apply to students from previous years.

o Seminar/Laboratory assignments and practical laboratory activity must be redone during

didactic activity time (in the 12 weeks before normal session).

• Laboratory activity: each student will come with it own semi-group.

• Laboratory activity: 3 out of 6 laboratories must be delivered.

• Late delivery of assignments will be penilized. Maximum 4 weeks are allowed to deliver an

assignment. After the deadline, the assignment will be graded with 0.

• The final grade computed with the given formula must be at least 5 in order to pass the exam.

Final grade=50%WrittenExam+25%Seminar+25%Laboratory

Attend 75% of seminar activities during semester AND attend 90% of lab activities during semester.

10.6 Minimum standard of performance

•

11. Labels ODD (Sustainable Development Goals)2

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the

discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no

label describes the discipline, delete them all and write „Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

Not applicable.

Date:
...

Signature of course coordinator

.....................

Signature of seminar coordinator

.....................

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

