SYLLABUS

NLP Techniques

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University, Cluj-Napoca
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Artificial Intelligence
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the disc	cipli	ne		NLP Techniques			Discipline code	MLE5208
2.2. Course coordina	2.2. Course coordinator			Lecturer Ph.D. Lupea Mihaiela				
2.3. Seminar coordinator			Le	ecture	Ph.D. Lupea Mihaiela			
2.4. Year of study	3	2.5. Semester	5	2.6. Type of evaluation	on	С	2.7. Discipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	3	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 lab
3.4. Total hours in the curriculum	42	of which: 3.5 course	28	3.6 seminar/laboratory/project	14
Time allotment for individual study (ID) and	self-study activities (S	A)		hours
Learning using manual, course support, bibliography, course notes (SA)					12
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					3
Evaluations					5
Practical project:					13
3.7. Total individual study hours 58					
3.8. Total hours per semester	100				
3.9. Number of ECTS credits	credits 4				

4. Prerequisites (if necessary)

4. Prerequisites (in necessary)				
4.1. curriculum	Formal languages, Data structures, Graphs Algorithms			
4.2 competencies	Programming skills in a high level programming language			

5. Conditions (if necessary)

or demand in necessary)				
5.1. for the course	-			
5.2. for the seminar /lab activities	Laboratory with computers; high level programming language environment (.NET			
5.2. for the seminar / lab activities	or any Java environment a.s.o.)			

6.1. Specific competencies acquired ¹

Professional/essential competencies	 Create data models Use software libraries Create software
Transversal competencies	 Show initiative Assume responsibility Think analytically

6.2. Learning outcomes

e	 The graduate knows and applies Artificial Intelligence-based techniques for natural language processing and the exploitation of linguistic data.
ğ	
Jec	 The graduate knows, understands and applies the basic concepts and the fundamental algorithms of
Knowledge	Artificial Intelligence and is able to evaluate them based on metrics.
Kn	 The graduate knows and understands the concepts and the techniques of knowledge representation
	and is able to apply them for problem solving.
	 The graduate is able to formally describe issues addressed in various areas, and to model them as
	problems that can be addressed using Artificial Intelligence techniques.
IIs	• The graduate is able to apply fundamental algorithms of Artificial Intelligence in order to solve real-
Skills	world problems.
	• The graduate is able to evaluate, both quantitatively and qualitatively, the performance of intelligent
	systems.
Responsibility and autonomy:	• The graduate has the necessary knowledge to review the literature and use international databases and international digital research libraries.
nsil	The graduate is able to write a scientific report.
	The graduate has the necessary knowledge to select and use the appropriate training procedures to
Resj	facilitate the process of assimilation of knowledge.

7. Objectives of the discipline (outcome of the acquired competencies)

	 To introduce the basic principles, domains and tasks in Natural Language 			
7.1 General objective of the	Processing (NLP)			
discipline	To understand the current state of the art in order to realize an overview of a			
	specific domain in NLP and to implement a NLP tool.			
	Apply and use formal models (logics, grammars, parsing), statistic models			
	(HMM), artificial intelligence algorithms and techniques to solve different tasks			
700 'S' 1' 'S SI	at the syntactic level (POS-tagging, parsing, chunking), and semantic level			
7.2 Specific objective of the discipline	(keyword extraction, document summarization, anaphora resolution,			
discipilile	sentiment analysis, word sense disambiguation) in Natural Language			
	Processing domain for English and Romanian languages.			
	 Use of Large Language Models (LLMs) to solve NLP tasks. 			

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

8. Content

8.1 Course	Teaching methods	Remarks
Course 1. Natural Language Processing (NLP): stages, domains, applications.	Exposure: description, explanation, examples, debate, dialogue	
Course 2. Part of speech tagging WordNet and RoWordNet - knowledge structure, semantic relations, lexical relations	Exposure: description, explanation, examples, debate, dialogue	
Course 3. Text representation and natural language models. Text classification.	Exposure: description, explanation, examples, dialogue	
Course 4. Syntactic parsing - grammar rules for English - sentence level construction; context-free grammers; - Cocke-Kasami-Yonger (CKY) algorithm;	Exposure: description, explanation, dialogue, examples.	
Course 5. Hidden Markov Model - Markov chains, Hidden Markov Model(HMM); - the forward algorithm; Viterbi algorithm. - part-of speech tagging using HMM	Exposure: description, explanation, examples, dialogue	
Course 5. Keyword extraction TextRank and RAKE algorithms	Exposure: description, explanation, examples, dialogue	
Course 7. Document summarization - approaches based on clustering and graphs.	Exposure: description, explanation, examples, dialogue	
Course 8. Students' presentations of NLP tasks and tools.	Evaluation	
Course 9. Sentiment analysis - opinion mining in social media - emotion analysis in literature	Exposure: description, explanation, debate, examples, dialogue	
Course 10. Anaphora resolution - Lapin and Lease algorithm - Mitkov's algorithm	Exposure: description, explanation, debate, examples, dialogue	
Course 11. Word Sense Disambiguation	Exposure: description,	
- dictionary and graph-based approaches. Course 12. Information extraction	explanation, dialog, examples Exposure: description, explanation, debate, examples, dialogue	
Course 13. Written exam	Evaluation	
Course 14. Students' presentations of the practical projects	Evaluation	

Bibliography

- 1. J.ALLEN: Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995.
- 2. E. CHARNIAK: Statistical language learning, MIT press, 1996.
- 3. L. DENG, Y. LIU: Deep learning in Natural Language Processing, Springer Verlag, Singapore, 2018
- 4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994.
- 5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006.
- 6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.
- 7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.
- 8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.
- 9. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01.
- 10. S. VAJJALA, B. MAJUMDER, A. GUPTA, H. SURANA: Practical Natural Language Processing. A Comprehensive Guide to Building Real-World NLP Systems, O'REILLY. 2020.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Study of platforms and libraries from different programming languages that offer preprocessing	Documentation on electronic platforms, explanation, dialogue,	The seminar/lab is structured as 2 hours classes every
functions for texts in Romanian and English languages.	case studies	second week
Study of the LLMs (large language models) for English and Romanian languages. Work with WordNet, Romanian WordNet and WordNetSimilarity. Work with dedicated tools for keyword extraction, summarization, anaphora resolution, sentiment analysis.	Documentation on electronic platforms, dialogue, case studies	
3. Identify practical tasks in Romanian NLP. Choose the NLP task to be solved, study different approaches, choose the approach that will be implemented. Search for the input data specific to the chosen task.	Documentation on electronic platforms, dialogue, case studies	
4. Students' presentations of an NLP task/ tool.	Evaluation	
5. Discussions about the implementation of the an NLP tool.	Explanation, dialogue, case studies	
6. Develop resources for Romanian NLP tasks.	Explanation, dialogue, case studies	
7. Students presentations of the practical projects.	Evaluation	

Bibliography

- 2. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.html
- 3. Resurse lingvistice in limba romana: www.racai.ro

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	Know the theoretical concepts of the domain. Apply the course methods, algorithms in problem solving.	Written exam	20%
	Know to write an overview of a specific NLP task	Theoretical report – presentation of a NLP task/tool.	30%
10.5 Seminar/laboratory	Be able to implement course algorithms	Practical project - implementation of a NLP tool.	35%
10.5 Seminar/laboratory	Be able to apply theoretical concepts in practical tasks	Develop resources for Romanian NLP tasks .	15%
10.6 Minimum standard of	performance		
The final grade to	be at least 5 (from a scale of 1 to 10).		

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date:	Signature of course coordinator	Signature of seminar coordinator		
15.04.2025				
	T DID T MILLS	T DID T MILLS		

Lect. PhD. Lupea Mihaiela Lect. PhD. Lupea Mihaiela

Date of approval: Signature of the head of department

Assoc.Prof. PhD. Adrian STERCA

2

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.