

SYLLABUS

Automata Theory and Compilers

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution Babeş Bolyai University

1.2. Faculty
Faculty of Mathematics and Computer Science

1.3. Department Department of Computer Science

1.4. Field of study Computer Science

1.5. Study cycle Bachelor

1.6. Study programme/Qualification Artificial Intelligence

1.7. Form of education Full time

2. Information regarding the discipline

2.1. Name of the discipline Automata Theory and Compilers Discipline code MLE5206

2.2. Course coordinator Prof.PhD. Simona Motogna

2.3. Seminar coordinator Prof.PhD. Simona Motogna

2.4. Year of study 3 2.5. Semester 5 2.6. Type of evaluation E 2.7. Discipline regime Mandatory

3. Total estimated time (hours/semester of didactic activities)

4. Prerequisites (if necessary)

4.1. curriculum Programming fundamentals, Data structures and algorithms

4.2. competencies Medium programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course Room with projector

5.2. for the seminar /lab activities
Computers/laptops
Licensed programming software (.NET, Java, Python or similar)

6.1. Specific competencies acquired 1

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

3.1. Hours per week 6 of which: 3.2 course 2
3.3
seminar/laboratory/project

2+2

3.4. Total hours in the curriculum 84 of which: 3.5 course 28
3.6
seminar/laboratory/project

56

Time allotment for individual study (ID) and self-study activities (SA) hours

Learning using manual, course support, bibliography, course notes (SA) 10

Additional documentation (in libraries, on electronic platforms, field documentation) 5

Preparation for seminars/labs, homework, papers, portfolios and essays 10

Tutorship 6

Evaluations 10

Other activities: -

3.7. Total individual study hours 41

3.8. Total hours per semester 125

3.9. Number of ECTS credits 5

P
ro

fe
ss

io
n

a
l/

e
ss

e
n

ti
a

l
co

m
p

e
te

n
ci

e
s

• develop the prototype for the software
• design the IT system
• fix errors in the software

T
ra

n
sv

e
rs

a
l

co
m

p
e

te
n

ci
e

s

• work in teams
• think analytically

6.2. Learning outcomes

K
n

o
w

le
d

g
e

- The graduate knows and understands the mathematical foundations needed to develop intelligent algorithms
and is capable of using them for algorithm implementation.
- The graduate has knowledge of programming, mathematics, engineering and technology and has the skills to
use them in creating complex computer systems.

S
k

il
ls

 - The graduate is able to evaluate, both quantitatively and qualitatively, the performance of intelligent systems.
- The graduate is able to identify complex issues and examine related issues in order to design several
solutions and implement these solutions.

R
e

sp
o

n
si

b
il

it
y

a

n
d

 a
u

to
n

o
m

y
:

- The graduate has the ability to choose and use programming paradigms (procedural, object-oriented,
functional) to create software applications appropriate to the specific field of the developed application.
- The graduate has the necessary skills to apply various methods and tools for analysis and visualizing the
results of the used Artificial Intelligence algorithms and techniques.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

• Knowledge, understanding and use of theoretical concepts used in compiler
design

• Improved programming skills

7.2 Specific objective of the
discipline

• Acquire knowledge about back-end of a compiler
• Improved programming skills: understand the underlying functioning of a

compiler, program debugging, better compiling error reporting
• Understading of formal langauges concepts and development of skills to model

problems using formal languages; ability to apply compiler specific techniques
to diverse real life problems

8. Content

8.1 Course Teaching methods Remarks

1. General Structure of a compiler. Introduction Exposure: description,
explanation, examples, demo

2. Scanning (Lexical Analysis). Formal
Languages

Exposure: description,
explanation, examples, demo

3. Grammars. Chomsky classification. Finite
Automata

Exposure: description,
explanation, examples, demo

4. Regular languages. Scanner generators Exposure: description,
explanation, examples, demo

5. Closure properties for regular languages Exposure: description,
explanation, examples, demo

6. Context-free grammars Exposure: description,
explanation, examples, demo

7. Parser generators. Push Down Automata Exposure: description,
explanation, examples, demo

8. Attribute grammars Exposure: description,
explanation, examples, demo

9 & 10 Parsing (Syntactical Analysis) Exposure: description,
explanation, examples, demo

11 & 12 Intermediary code and object code
generation

Exposure: description,
explanation, examples, demo

13 & 14 Summarization of theoretical and
practical aspects. Application in compiler
design

Exposure: description,
explanation, examples, demo

Bibliography
1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.
2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.
3. D. GRIES - Compiler construction for digital computers,, John Wiley, New York, 1971.
4. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006
5. SIPSER, M., Introduction to the theory of computation, PWS Pulb. Co., 1997
6. CSO RNYEI ZOLTA N, Bevezete s a fordí to programok elme lete be, I, II., ELTE, Budapest, 1996
7. L.D. SERBANATI - Limbaje de programare si compilatoare, Ed. Academiei RSR, 1987.

8.2 Seminar Teaching methods Remarks

1. Specification of a programming language;
BNF notation

Dialogue, debate, case studies,
examples

2. Finite automata Dialogue, debate, case studies,
examples

3. Regular and context free grammars Dialogue, debate, case studies,
examples

4 & 5 Properties of regular languages Dialogue, debate, case studies,
examples

6. LR(0)parsing Dialogue, debate, case studies,
examples

7. SLR parsing Dialogue, debate, case studies,
examples

8. LR(1) and LALR parsing Dialogue, debate, case studies,
examples

9. Push Down Automata Dialogue, debate, case studies,
examples

10. LL(1) parsing Dialogue, debate, case studies,
examples

11. Attribute grammars Dialogue, debate, case studies,
examples

12. Intermediary code Dialogue, debate, case studies,
examples

13. Properties of cfg Dialogue, debate, case studies,
examples

14. Summarization exercices
Dialogue, debate, case studies,
examples

8.3 Laboratory Teaching methods Remarks

1. Task 1: Specify a mini-language and
implement scanner
1.1: Mini language specification (BNF notation)

Explanation, dialogue, case
studies

2. Task 1: Specify a mini-language and
implement scanner
1.2: implement main functions in scanning

Explanation, dialogue, case
studies

3. Task 1: Specify a mini-language and
implement scanner
1.3: Symbol Table organization

Explanation, dialogue, case
studies

4. Task 1: Specify a mini-language and
implement scanner
1.4: Main program, testing + delivery

Testing data discussion,
evaluation

5. Task 2: Finite Automata
2.1: Verify sequence acceptance DFA and NFA

Explanation, dialogue, case
studies

6. Task 2: Finite Automata
2.2: Adapt scanner to use FA to determine
tokens

Testing data discussion,
evaluation

7. Task 3: Parser implementations
3.1: define data structures and architecture of
application
3.2 implement main functions in parsing

Explanation, dialogue, case
studies

One of: descendant recursive,
LL(1), LR(0), SLR

8. Task 3: Parser implementations
 3.3: main program and module integration

Testing data discussion,
evaluation

Task 3 is developed in teams of 2
students

9. Task 3: Parser implementations
 3.4: testing and error handling

Explanation, dialogue, case
studies

10. Task 3: Parser implementations
 3.5: delivery

Explanation, dialogue, case
studies

11. Task 4: use tools for lexer generator: lex Explanation, dialogue, case
studies

12. Task 5: use tools for parser generator: yacc Testing data discussion,
evaluation

13. Task 6: use tools for lexer and parser
generator
6.1 Combine the 2 tools and re-run tasks 3 and
4

Testing data discussion,
evaluation

14. Task 6: use tools for lexer and parser
generator:
6.2 Testing and delivery

Explanation, dialogue, case
studies

Bibliography
1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.
2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.
3. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006
4. G. MOLDOVAN, V. CIOBAN, M. LUPEA - Limbaje formale si automate. Culegere de probleme, Univ. Babes-Bolyai, Cluj-
Napoca, 1996.
5. D. GRIES - Compiler construction for digital computers,, John Wiley, New York, 1971.
6. L.D. SERBANATI - Limbaje de programare si compilatoare, Ed. Academiei RSR, 1987.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
• The course exists in the studying program of all major universities in Romania and abroad;

• The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.4 Course

- know the basic principle
of the domain;
- apply the course concepts
 - problem solving

Written exam 60%

10.5 Seminar/laboratory

- be able to apply
algorithms, understand
examples - problem solving

problems solved -
homeworks delivered -
continuous observations
during semester

10%

- be able to implement
course concepts and
algorithms
 - apply techniques for
different classes of
programming languages

-Practical examination
during all semester -
documentation -portofolio
-continous observations

30%

10.6 Minimum standard of performance

➢ Attend 75% of seminar activities during semester AND attend 90% of lab activities during semester

• At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.

• Understand the basic concepts of formal languages: grammar, FA, PDA, regular expressions; understand
compiling principles, scanning and parsing

11. Labels ODD (Sustainable Development Goals)2

Not applicable.

Date:

12.04.2025

Signature of course coordinator

Prof.PhD. Simona Motogna

Signature of seminar coordinator

Prof.PhD. Simona Motogna

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the

discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no

label describes the discipline, delete them all and write „Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

