SYLLABUS
Parallel and Distributed Programming

University year 2025/2026

1. Information regarding the programme

1.1. Higher education institution

Babes Bolyai University

1.2. Faculty

Faculty of Mathematics and Computer Science

1.3. Department

Department of Computer Science

1.4. Field of study

Computer Science

1.5. Study cycle

Bachelor

1.6. Study programme/Qualification

Artificial Intelligence

1.7. Form of education

Full time

2. Information regarding the discipline

2.1. Name of the discipline ‘ Parallel and Distributed Programming

| Discipline code | MLE5077

2.2. Course coordinator

Lect. PhD. Radu Lupsa

2.3. Seminar coordinator

Lect. PhD. Radu Lupsa

2.4. Year of study ‘ 3 ‘ 2.5. Semester ‘ 5 ‘ 2.6. Type of evaluation ‘ E ‘ 2.7. Discipline regime ‘ Compulsory
3. Total estimated time (hours/semester of didactic activities)
: 33
3.1. Hours per week 5 of which: 3.2 course 2 seminar/laboratory/project 0/2/1
3.4. Total hours in the curriculum 70 of which: 3.5 course | 28 36 . . 42
seminar/laboratory/project

Time allotment for individual study (ID) and self-study activities (SA) hours
Learning using manual, course support, bibliography, course notes (SA) 10
Additional documentation (in libraries, on electronic platforms, field documentation) 10
Preparation for seminars/labs, homework, papers, portfolios and essays 20
Tutorship 10
Evaluations 5

Other activities:

3.7. Total individual study hours 55
3.8. Total hours per semester 125
3.9. Number of ECTS credits 5

4. Prerequisites (if necessary)

4.1. curriculum

Programming Fundamentals, Object Oriented Programming, Data Structures and Algorithms,
Operating Systems

4.2. competencies Programming

abilities

5. Conditions (if necessary)

5.1. for the course

Lecture room with videoprojector

5.2. for the seminar /lab activities

Room with videoprojector; computers with IDEs for C++, Python, Java and C#

6.1. Specific competencies acquired !

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

e use of theoretical foundations of computer science as well as of formal models
e use of software tools in an interdisciplinary context

Professional/essential
competencies

e application of organized and efficient work rules, of responsible attitudes towards the didactic-
scientific field, to bring creative value to own potential, with respect for professional ethics principles
and norms

e use of efficient methods and techniques to learn, inform, research and develop the abilities to bring
value to knowledge, to adapt at the requirements of a dynamical society and to communicate efficiently
in Romanian language and in an international language

Transversal
competencies

6.2. Learning outcomes

The graduate has the necessary knowledge for using computers, developing software programs and
applications, information processing.

The graduate has knowledge related to programming, mathematics, engineering and technology and has the
skills to use them to create complex information technology systems.

Knowledge

The graduate has the necessary skills for computer program design and software systems analysis.
The graduate has the ability to apply general rules to specific problems and produce relevant solutions.

Skills

The graduate is able to identify complex problems and examine related issues to develop solving options and
implement solutions.

The graduate is able to combine diverse information to formulate solutions and generate ideas for developing
new products and applications.

Responsibility
and autonomy:

7. Objectives of the discipline (outcome of the acquired competencies)

e Aquiring the main concepts of concurrent, parallel and distributed

programming;
e Basics of communication between processes and threads, on the same
7.1 General objective of the machine or on distinct machines;
discipline e Knowing basic techniques of parallel programming;

e Knowing and using parallel application design patterns
Knowing and using the existing frameworks for developing parallel and
distributed applications

Parallel architectures and parallel programming systems

Know how to use parallel programming techniques in problem solving
Know how to evaluate the performance increase obtained by parallelization
Ability to work independent or in a team in order to solve problems in a
parallel and/or distributed context

7.2 Specific objective of the
discipline

8. Content

8.1 Course

Teaching methods

Remarks

C1. General introduction. Necessity to use
parallelism. Concurrent vs parallel vs
distributed computing

Exposure: description,

explanation, examples, debate.

C2. Parallel architectures: pipeline, vectorial
machines, grid and cluster computing.

Exposure: description,

explanation, examples, debate.

C3. Threads. Race conditions, mutual exclusion,
deadlocks. Synchronization primitives.

Exposure: description,

explanation, examples, debate.

C4. Producer-consumer parallelism. Low-level
primitives (condition variables) and high-level
mechanisms (futures, producer-consumer
queues)

Exposure: description,

explanation, examples, debate.

C5-C6. Asynchronous programming. Futures
with continuations. Coroutines.

Exposure: description,

explanation, examples, debate.

C7. Basic parallel algorithms.

Exposure: description,

explanation, examples, debate.

C8. Recursive decomposition and parallel
explore algorithms.

Exposure: description,

explanation, examples, debate.

CO. Distributed programming using MPI

Exposure: description,

explanation, examples, debate.

C10. Distributed recursive decomposition and
parallel explore.

Exposure: description,

explanation, examples, debate.

C11. Distributed protocols. Lamport clocks.

Exposure: description,

explanation, examples, debate.

C12. Distributed shared memory.

Exposure: description,

explanation, examples, debate.

C13. GPGPU programming. OpenCL.

Exposure: description,

explanation, examples, debate.

C14. Fault tolerance

Exposure: description,

explanation, examples, debate.

Bibliography
[]

http://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/

Ian Foster. Designing and Building Parallel Programs, Addison-Wesley 1995.

Michael McCool, Arch Robinson, James Reinders, Structured Parallel Programming: Patterns for Efficient
Computation,” Morgan Kaufmann,, 2012 ..

Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders,Addison A Pattern Language for Parallel
Programming. Wesley Software Patterns Series, 2004.

Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing, Addison Wesley, 2003.

D. Grigoras. Calculul Paralel. De la sisteme la programarea aplicatiilor. Computer Libris Agora, 2000.

V. Niculescu. Calcul Paralel. Proiectare si dezvoltare formala a programelor paralele. Presa Univ. Clujana, 2006.
D.B. Skillicorn, D. Talia. Models and Languages for Parallel Computation. ACM Computer Surveys, 30(2) pg.123-
136, June 1998.

B. Wilkinson, M. Allen, Parallel Programming Techniques and Applications Using Networked Workstations and
Parallel Computers, Prentice Hall, 2002

E.F. Van de Velde. Concurrent Scientific Computing. Spring-Verlag, New-York Inc. 1994.

Boian EM. Ferdean C.M., Boian R.F, Dragos R.C. Programare concurenta pe platforme Unix, Windows, Java. Ed.
Albastra, grupul Microinformatica, Cluj, 2002 .

OpenMP Tutorials

MPI Tutorials

OpenCL Tutorials

8.2 Seminar / laboratory

Teaching methods Remarks

L1. Introduction

Dialogue, debate, examples,
guided discovery.

L2-L3. Synchronization primitives.

Dialogue, debate, examples,
guided discovery.

L4. Producer-consumer parallelism.

Dialogue, debate, examples,
guided discovery.

L5-L6. Asynchronous programming

Dialogue, debate, examples,
guided discovery.

Dialogue, debate, examples,

L7. Basic parallel algorithms guided discovery.

Dialogue, debate, examples,

L8. Recursive decomposition guided discovery.

Dialogue, debate, examples,

L9. Parallel explore guided discovery.

Dialogue, debate, examples,

L10. Basic distributed algorithms with MPI . ;
guided discovery.

L11. Recursive decomposition and parallel Dialogue, debate, examples,
explore with MPI guided discovery.

Dialogue, debate, examples,

L12. Distributed shared memory. guided discovery.

Dialogue, debate, examples,

L13. OpenCL guided discovery.

Dialogue, debate, examples,

L14. Finalizing lab activities suided discovery.

Bibliography

e Eckel, B, Thinking in Java, 4th Edition, New York: Prentice Hall, 2006.

e Larman, C.: Applying UML and Design Patterns: An Introduction to OO0 Analysis and Design, Berlin: Prentice Hall,
2004.

e Fowler, M., Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.

e E.Gamma, R. Helm, R. Johnson,]. Vlissides, Design Patterns — Elements of Reusable Object Oriented Software,
Ed. Addison Wesley, 1994.

e Walls, Craig, Spring in Action, Third Edition, Ed. O’Reilley, 2011.

e Kent Beck, Test Driven Development: By Example, Ed. Addison-Wesley Professional, 2002.

e http://download.oracle.com/javase/tutorial/

e http://msdn.microsoft.com/en-us/library/aa288436%28v=vs.71%29.aspx

e http://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

e The course follows ACM and IEEE recommendations for computer science studies
e The course is part of the curricula in all major universities, both local and abroad
e The software companies consider the course content important for acquiring advanced programming abilities.

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade
Knowing basic concepts Written exam 50%

10.4 Course Applying theoretical
knowledge in problem Semester project 20%
solving
Applying thfeoretlcal Evaluation of lab

) knowledge in problem . 30%
10.5 Seminar/laboratory solving assignments

10.6 Minimum standard of performance

e Atleast 12 out of 14 attendances at the labs

http://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/

Atleast grade 5 (out of 10) for the written exam

Atleast grade 5 (out of 10) for the final average.

11. Labels ODD (Sustainable Development Goals)?

Not applicable.

Date: Signature of course coordinator Signature of seminar coordinator

Date of approval: Signature of the head of department

Assoc.prof.phd. Adrian STERCA

Z Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the
discipline and delete the others, including the general one for Sustainable Development - if not applicable. If no
label describes the discipline, delete them all and write , Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

