SYLLABUS

Fundamentals of Machine Learning

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Computer Science
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the disc	ciplin	e Fun	Fundamentals of Machine Learning			9	Discipline code	MLE5228	
2.2. Course coordinator				Lect. Dr. Bogdan MURSA					
2.3. Seminar coordinator				Le	ct. Dr.	Bogdan M	IURSA		
2.4. Year of study	2	2.5. Semester	Semester 4 2.6. Type of evaluatio			Е	2.7. Dis	cipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	5	of which: 3.2 course	2	3.3 seminar/laboratory/project	2lab
3.4. Total hours in the curriculum		of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support,	bibliogra	aphy, course notes (SA)			25
Additional documentation (in libraries, on electronic platforms, field documentation)					29
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					7
Evaluations					3
Other activities:					-
3.7. Total individual study hours 94					
3.8. Total hours per semester	Total hours per semester 150				
3.9. Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	Algorithms, data structures, statistics
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	Projector		
5.2. for the seminar /lab activities	Computers, specific development environment		
6.1. Spacific compatancies acquired 1			

6.1. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	CE1.1 Description of artificial intelligence concepts and research directionsCE1.2 Evaluation of the quality and stability of the obtained solutions and their comparison with the solutions obtained by traditional methodsCE1.3 Using artificial intelligence methods, techniques and algorithms to model solutions to classes of problems
Transversal competencies	 CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

6.2. Learning outcomes

Knowledge	 The graduate knows, understands and applies the basic concepts and the fundamental algorithms of Artificial Intelligence and is able to evaluate them based on metrics. The graduate knows and understands the concepts and the techniques of knowledge representation and is able to apply them for problem solving.
Skills	 The graduate is able to identify complex issues and examine related issues in order to design several solutions and implement these solutions. The graduate is able to apply fundamental algorithms of Artificial Intelligence in order to solve real-world problems. The graduate is able to evaluate, both quantitatively and qualitatively, the performance of intelligent systems.
Responsibility and autonomy:	 The graduate is able to apply architectural templates, design templates and best practices in the field to design highly complex software applications. The graduate has the necessary skills to apply various methods and tools for analysis and visualizing the results of the used Artificial Intelligence algorithms and techniques. The graduate has the necessary knowledge to review the literature and use international databases and international digital research libraries.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Emphasis the proper machine learning methods and techniques for solving real-world problems
7.2 Specific objective of the discipline	• This course is aimed to advance both theoretical and practical aspects of Machine Learning. The course aims to provide an overview of the discipline and its main areas. At the end of the course, students will understand the basic principles of machine learning and associated algorithmic approaches and have knowledge of machine learning applications.

8.1 Course	Teaching methods	Remarks
 Introduction to Machine Learning Intelligent systems – Machine Learning (computational intelligence) Problem formalisation Regression problems Supervised classification problems Unsupervised classification problems Supervised learning	 Interactive Presentation Explanation Practical examples Case-study discussions 	
Bibliography 1. S. Russell, P. Norvig, Artificial Intelligence: A Mode	ann Annnaach Duantias IIal	1005

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 3. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- 4. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 5. T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- 6. James Kennedy, Russel Eberhart, Particle Swarm Optimisation, Proceedings of IEEE International Conference on Neural Networks. IV. pp. 1942–1948, 1995

 Marco Dorigo, Christian Blum, Ant colony optimization theory: A survey, Theoretical Computer Science 344 (2005) 243 – 27 					
 H.F. Pop, G. Şerban, Inteligență artificială, Cluj Napoca, 2004 D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003 					
10. C. Bishop, Pattern Recognition and Machine Learning					
11. <u>I. Goodfellow</u> , Y. Bengio, <u>A. Courville</u> , Deep	0				
8.2 Seminar / laboratory	Teaching methods	Remarks			
1. Eficient solutions for algorithmic problems					
 Introduction to Machine Learning – performance measures 					
3. Regression problems – Least Mean Square Root					
4. Data normalisation					
5. Regression problems – descent gradient					
6. Classification problems – logistic regression	• Interactive				
7. Regression problems – Artificial Neural Networks	exposure				
8. Classification problems – Artificial Neural	Explanation				
Networks	Conversation				
9. Regression problems – Evolutionary Algorithms Didactical demonstration					
10. Classification problems – Evolutionary Algorithms					
11. Clustering					
12. Real-world problems – ML-based solutions					
13. Development of applications that include					
intelligent components					
Bibliography					

Bibliography

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 3. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001 A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, <u>https://github.com/ageron/handson-ml</u>

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the curriculum of many universities in the world.
- The results of course are considered by software companies particularly useful and topical, developing needed abilities in modelling and visualization of data.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	Knowledge of the basic concepts of the field	Written exam	50%

	Applying the intelligent principles from the course content to solve complex and difficult problems		
10.5 Seminar/laboratory	 Specification, design, implementation and testing of intelligent methods Effective problem solving with the help of previously implemented methods 	Systematic observation of the student while solving the task Practical projects	50%
10.6 Minimum standard of	performance		

Each student has to demonstrate that he has reached an acceptable level of knowledge and understanding of the field, that he is able to express the knowledge in a coherent form, that he has the ability to establish certain connections and to use the knowledge in solving some problems.

To pass the exam you must:

- at least 60% of the laboratory assignments are completed
- an evaluation average (written exam, seminar, laboratory) to be above 5

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date: 30.04.2025

Signature of course coordinator

Signature of seminar coordinator

Lect. Dr. Bogdan MURSA

Lect. Dr. Bogdan MURSA

Date of approval:

...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.