SYLLABUS

Metaheuristics

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Undergraduate
1.6. Study programme/Qualification	Artificial Intelligence
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Metaheur	Metaheuristics				Dis	cipline code	MLE5205
2.2. Course coordinator				Pr	of. dr.	Camelia Chi	ra		
2.3. Seminar coordinator					Pr	of. dr.	Camelia Chi	ra	
2.4. Year of study	2	2.5. Semester	4	2.6. Type of evaluation	on	E	2.7. Discipli	ne regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	2 lab
3.4. Total hours in the curriculum 56 of which: 3.5 co		of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support, bibliography, course notes (SA)					20
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					6
Evaluations					10
Other activities:					-
3.7. Total individual study hours 94					
3.8. Total hours per semester	150				
3.9. Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	Algorithms, data structures, statistics
4.2. competencies	Average programming skills in a high-level object-oriented programming language

5. Conditions (if necessary)

5.1. for the course	- Projector
5.2. for the seminar /lab activities	- For lab activity, computers with a high processing speed are needed.

6.1. Specific competencies acquired ¹

Professional/essential competencies	 define the process create software
Transversal competencies	show initiativethink analytically

6.2. Learning outcomes

0.2. Lear	rning outcomes
Knowledge	 The student knows: The graduate knows, understands and applies the basic concepts and the fundamental algorithms of Artificial Intelligence and is able to evaluate them based on metrics. The graduate knows and understands the mathematical foundations needed to develop intelligent algorithms and is capable of using them for algorithm implementation.
Skills	 The student is able to: The graduate is able to formally describe issues addressed in various areas, and to model them as problems that can be addressed using Artificial Intelligence techniques. The graduate has the necessary skills to apply various methods and tools for analysis and visualizing the results of the used Artificial Intelligence algorithms and techniques. The graduate is able to apply fundamental algorithms of Artificial Intelligence in order to solve realworld problems.
Responsibility and autonomy:	The student has the ability to work independently to: • The graduate is able to write a scientific report.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Metaheuristics aims to study specialized algorithms in solving complex problems
7.2 Specific objective of the discipline	• The course focuses on theoretical and practical aspects of metaheuristics and aims to provide an overview of the field and major types of metaheuristics. At the end of the course, students will be able to understand the basic principles that guide the development of metaheuristics and the associated algorithmic approaches, and will have knowledge of their applications.

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

8. Content

8.1 Course	Teaching methods	Remarks
Introduction to metaheuristics	Interactive exposure	
2. Complex problems and modelling real problems. Classical models vs metaheuristics in solving complex problems	Conversation Explanation Examples	
3. Representation, evaluation, neighborhood. Local search methods, hill-climbing algorithms		
4. Single-point methods in solving complex problems – Tabu Search, Simulated Annealing		
5. Population-based methods in solving complex problems		
6. Evolutionary computing in solving optimization and search problems		
7. Design of evolutionary algorithms: binary representation, real representation, vectors, permutations		
8. Swarm intelligence models	7	
9. State-of-the-art models	7	
10. Computing models and hybrid systems	1	
11. Hybrid models and examples of real- world applications		
1214. Applications of metaheuristics		

Bibliography

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 3. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- 4. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 5. Marco Dorigo, Christian Blum, Ant colony optimization theory: A survey, Theoretical Computer Science 344 (2005) 243 27
- 6. H.F. Pop, G. Şerban, Inteligență artificială, Cluj Napoca, 2004
- 7. A. E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer, 2003.
- 8. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
- 9. K. A. De Jong, Evolutionary Computation: A Unified Approach. MIT Press, Cambridge, MA, 2006.
- 10. Z. Michalewicz, D. B. Fogel, How to solve it: Modern Heuristics, 2nd edition, Springer, 2004.

8.2 Seminar / laboratory	Teaching methods	Remarks
L1-L2. Rezolvarea problemelor de căutare cu	Conversația	
ajutorul unor metode standard și de căutare	Algoritmizarea	
locală	Brainstorming-ul	
L3-L4. Rezolvarea problemelor de căutare și	Studiul de caz	
optimizare cu ajutorul metodelor de căutare de	Simularea	
tip single-point	Studiul individual	
L5-L6. Rezolvarea problemelor de căutare și	Exercițiul	
optimizare cu ajutorul algoritmilor evolutivi	Descoperirea	
L7-L8. Rezolvarea problemelor cu ajutorul		
algoritmilor de tip swarm intelligence		
L9-L10. Extinderea și hibridizarea algoritmilor		
euristici. Proiect în echipă.		
L11-L13. Interpretarea și analiza rezultatelor		
algoritmilor euristici în rezolvarea unor		
probleme complexe. Proiect în echipă.		
Dibliography		

Bibliography

- 1. Z. Michalewicz, D. B. Fogel, How to solve it: Modern Heuristics, 2nd edition, Springer, 2004.
- 2. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995.
- 3. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011.

- 4. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998.
- 5. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The course exists in the studying program of all major universities in Romania and abroad.
- The content of the course is considered by the software companies as important for developing the modelling and programming skills of students.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	 Know the basic concepts of the domain Apply the intelligent principles from the course to solve complex problems 	Written exam Presentation	50%
Specification, design, implementation and testing of metaheuristics Solving effectively problems using the implemented methods		Systematic evaluation of the student in solving tasks Evaluation of lab assignments	50%

10.6 Minimum standard of performance

- Each student must demonstrate an acceptable level of knowledge and understanding of the domain, the ability to present knowledge in a coherent manner and the ability to establish connections and use this knowledge to solve problems.
- > To pass the exam it is required to:
 - o At least 2 lab assignments must be presented
 - \circ The average grade (of the written exam, presentation and lab) must be minimum 5

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date: Signature of course coordinator Signature of seminar coordinator

14.04.2025 Prof. dr. Camelia Chira Prof. dr. Camelia Chira

Date of approval: Signature of the head of department

Assoc.prof.phd. Adrian STERCA

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.