SYLLABUS

(Introduction to Big Data)

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor of Science
1.6. Study programme/Qualification	Artificial Intelligence
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the discipli	ne Introduct	Introduction to Big Data			Discipline code	MLE5203	
2.2. Course coordinator				Le	ct. Dr.	Ioana-Georgiana Ciuciu	
2.3. Seminar coordinator			Lect. Dr. Ioana-Georgiana Ciuciu				
2.4. Year of study 2	2.5. Semester	4	2.6. Type of evaluation	on	С	2.7. Discipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bibliography, course notes (SA)				24	
Additional documentation (in libraries, on electronic platforms, field documentation)			24		
Preparation for seminars/labs, homework, papers, portfolios and essays				32	
Tutorship				6	
Evaluations				8	
Other activities:			-		
3.7. Total individual study hours 94					
3.8. Total hours per semester	150				
3.9. Number of ECTS credits	6				

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	 Basic knowledge of data analytics, preferably Basic knowledge of data visualization, preferably Programming skills

5. Conditions (if necessary)

5.1. for the course	•	Room with video projector
5.2. for the seminar /lab activities	•	Room with computers as needed; Big Data software installed
,	•	High level programming language environment

6.1. Specific competencies acquired ¹

Professional/essential competencies	 manage engineering projects create data models
Transversal competencies	 work in teams think analytically

6.2. Learning outcomes

	ming outcomes
Knowledge	 The graduate knows, understands and uses methods for representing, analyzing and handling large volumes of data. The graduate is able to formally describe issues addressed in various areas, and to model them as problems that can be addressed using Artificial Intelligence techniques.
Skills	 The graduate is able to apply fundamental algorithms of Artificial Intelligence in order to solve realworld problems. The graduate is able to design and implement software systems that are using methods of Artificial Intelligence and to evaluate their performance. The graduate has the necessary knowledge to design, analyze and manage databases. The graduate is able to apply architectural templates, design templates and best practices in the field to design highly complex software applications.
Responsibility and autonomy:	 The graduate has the ability to develop, design and create new applications, systems or products using best practices in the field of Computer Science. The graduate has the necessary knowledge to select and use the appropriate training procedures to facilitate the process of assimilation of knowledge.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Handling (extremely) large amounts of digital data in various formats (text, video, financial, medical, etc.)
7.2 Specific objective of the discipline	 Enable the use of novel algorithms, software infrastructures and methodologies for the purpose of processing (store, retrieve, analyze) large amounts of data Provide decision support over large volumes of data Enable the creation of applications and services for various business domains based on the results of big data analysis.

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

8. Content

0.1.6	m 1: (1 1	D I
8.1 Course	Teaching methods	Remarks
1. Introduction to Data Science and Big	Exposure, description,	Data Science main concepts,
Data – part I	explanation, examples,	the Data Science Process,
	case studies	examples, case studies
2. Introduction to Data Science and Big	Exposure, description,	Data types, data sources, data
Data – part II	explanation, examples,	availability, main Big Data
	case studies	concepts, Big Data emerging
		technologies, case study examples
3. Industrial Standards for Data Mining	Exposure, description,	Methodology for Data Science
Projects	explanation, examples,	projects (CRISP-DM)
110,000	case studies	
4. Big Data Architecture	Exposure, description,	Traditional database systems
ii big butu memteeture	explanation, examples,	versus Big Data systems
	case studies	The Lambda Architecture - a
		model for building a Big Data
		system, case studies and examples
		system, case studies and examples
5. Batch processing (Batch Laver)	Exposure, description,	Big Data storage, data model for
5. Batch processing (Batch Layer)	explanation, examples,	Big Data storage, data moder for Big Data, batch computing, the
	case studies	Hadoop Ecosystem, Batch
	case studies	
		processing, technologies
C Bullium in 12 2 2	Ermaguna description	Big Data storage, data model for
6. Batch data processing with Spark	Exposure, description,	
	explanation, examples,	Big Data, batch computing, the
	case studies	Hadoop Ecosystem, Batch
		processing, technologies.
		Examples and exercises based on
		Apache Spark
7 Conving Layer	Exposure, description,	Requirements, performance
7. Serving Layer	explanation, examples,	metrics, the
	case studies	normalization/denormalization
O Croad processing (Croad Laver)	E-magning description	problem, tools
8. Speed processing (Speed Layer)	Exposure, description,	Computing and storing of real
	explanation, examples,	time views, real time updates,
0 7 1	case studies	tools
9. Data Ingestion	Exposure, description,	Definitions and design
	explanation, examples,	considerations, batch ingestion,
	case studies	real time ingestion, tools
10 NaCOL Calution - Con Dia Data	European de garieties	NaCOL databases NaCOL Dat
10. NoSQL Solutions for Big Data	Exposure, description,	NoSQL databases, NoSQL Data
	explanation, examples,	Models
	case studies	Tutorial provided
11. Data Visualization	Exposure, description,	Scientific data visualization
11. Data visualizativii	explanation, examples,	principles, examples, tools
	= =	principles, examples, tools
12 Rig Data Casa Studios		Drocontation of Dig Data
12. Dig Data Case Studies		
		(industrial) case studies
40 Fd 10 11 - B 1 - 1 - B - B		
and Al		
	case studies	
		privacy of data; (ii) algorithmic
12. Big Data Case Studies 13. Ethical Challenges Related to Big Data and AI	case studies Exposure, description, explanation, examples, case studies Exposure, description, explanation, examples, case studies	Presentation of Big Data (industrial) case studies Challenges in developing and using big data applications and AI models, including (i) security and privacy of data; (ii) algorithmic

		bias and fairness; (iii) transparency and; and (iv) social and ethical implications
14. Big Data Research Essays Presentation	Exposure, description, explanation, examples, case studies	Student essay presentation

Bibliography

Marz, N., & Warren, J. (2015). Big Data. Principles and Best Practices of scalable real-time systems. Manning Publications

Cielen, D., Meysman, A.D.B., & Ali, M. (2016). Introducing Data Science. Big Data, machine learning, and more, using Python tools. Manning Publications

Grus, J. (2019). Data Science from Scratch: First Principles with Python. O'Reilly Media, Inc.

Damji, J.S., Wenig, B., Das, T., & Lee, D. (2020). Learning Spark. O'Reilly Media, Inc.

Zečević, P., Bonaći, M. (2017). Spark in Action, Manning Publications

Perrin, J.G. (2020). Spark in Action, 2nd Ed., Manning Publications

Zelenin, A., Kropp, A. (2025). Apache Kafka in Action, Manning Publications

Sadalage, P., Fowler, M. (2013). NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Pearson Education, Inc.

Banker, K., Bakkum, P., Verch, S., Garrett, D. and Hawkins, T. (2016). MongoDB in Action, Second Edition, Manning **Publications**

Borucki, A. (2024). MongoDB in Action, 3rd Ed., Manning Publications Agneeswaran, V. (2014). Big Data Analytics Beyond Hadoop. Pearson Education

White, T. (2009). Hadoop: The Definitive Guide. O'Reilly

Holmes, A. (2015). Hadoop in Practice, 2nd ed., Manning Publications

McCallum, Q. E. (2012). Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work. O'Reilly

Grigorev, A. (2021). Machine Learning Bookcamp, Manning Publications Rioux, J. (2022). Data Analysis with Python and PySpark, Manning Publications

Khalil, M.	<u>(2025</u>). Effective l	Data <i>I</i>	Analysis,	Mannın	g Publications
Q 2 Samin	ar / [a]	horatory				Toaching mot

8.2 Seminar / laboratory	Teaching methods	Remarks
Semester project organized with groups of	Research-informed	Groups will be monitored via an
about 2-3 students (depending on the requirements	Learning	MS Team managed with the course/lab the responsible
and the equipment needed)	Tutorial-based	, ,
		The seminar/lab takes place every
Team work will be autonomous (focus on	Problem-solving	two weeks and takes two hours
creativity and critical thinking)	approach	
Technical tutorials will be provided to support	Team work	
student work around the most important		
aspects of Big Data storage and processing	Big Data solutions for	
(e.g., Hadoop	concrete problems and	
shell, PySpark, Data Ingestion with Apache	case studies	
Sqoop, NoSQL, etc.)		

Bibliography (same as for the course)

- 1. http://mahout.apache.org/
- 2. http://www.tutorialspoint.com/mahout/mahout introduction.htm
- 3. http://spark.apache.org/documentation.html

- 4. http://shark.cs.berkeley.edu/
- 5. http://spark.apache.org/
- 6. http://nosql-database.org/
- 7. https://www.mongodb.com/nosql-explained

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Synergies with various local and EU initiatives: local industry, national institutions, European Data Science Academy (EDSA, https://edsa-project.eu/), EU projects such as European Federation of Data Driven Innovation Hubs (EUHubs4Data, https://euhubs4data.eu/), Incubator of Trusted B2B Data Sharing ecosystems of collaborating SMEs linked to Digital Innovation Hubs (i4Trust, https://i4trust.org/), REACH EuRopEAn incubator for trusted and secure data value Chains (https://www.reach-incubator.eu/), Big Data for Next Generation Energy (BD4NRG, https://www.bd4nrg.eu/), LETHE (https://cordis.europa.eu/project/id/101017405), FARE (https://cordis.europa.eu/project/id/853566), the Human Brain Project (https://www.humanbrainproject.eu/en/), SoBigData (https://project.sobigdata.eu/), etc.
- Collaboration with the IT industry: invited lectures with real-life use cases, semester project topics, equipment (e.g., smart sensors).
- Collaboration with other study programs (e.g., Bioinformatics from the Faculty of Biology) around the semester project or with students and professors from other faculties and universities (e.g., collaborative projects, invited courses, etc.)

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	- to be familiar with the main concepts of the domain	Written exam/ Evaluation of a research essay	50%
	-to be able to model a problem from a specific application field relying on emergent Big Data technologies		
	- to be able to apply these principles in real-life use cases		
10.5 Seminar/laboratory	- to be able to propose viable creative solutions to real-life big data challenges from various application domains - to be able to consume (query, analyze)Big Data in order to derive information relevant to use cases from various application domains - to demonstrate critical thinking - to successfully perform individual and team-based tasks	Semester project / Tutorials	50%
10.6 Minimum standard of performance			

- A minimum grade of 5 (on a scale from 1 to 10) is necessary for the written exam, the practical work and the research essay
- The lab attendance is compulsory at a rate of 90%, according to the decision of the Computer Science Department Council (http://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-15.03.2017.pdf)

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date: 15.04.2025

Signature of course coordinator

Signature of seminar coordinator

Assist.Prof. PhD. Ioana CIUCIU

Assist.Prof. PhD. Ioana CIUCIU

Date of approval:

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

_

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.