
SYLLABUS

Advanced Programming Techniques

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution Babeş-Bolyai University of Cluj-Napoca

1.2. Faculty Faculty of Mathematics and Computer Science

1.3. Department Departament of Computer Science

1.4. Field of study Computer Science

1.5. Study cycle Bachelor

1.6. Study programme/Qualification Artificial Intelligence

1.7. Form of education Full time

2. Information regarding the discipline

2.1. Name of the discipline Advanced Programming Techniques Discipline code MLE5258

2.2. Course coordinator Assoc. Prof. PhD Bocicor Maria Iuliana

2.3. Seminar coordinator Assoc. Prof. PhD Bocicor Maria Iuliana

2.4. Year of study 2 2.5. Semester 3 2.6. Type of evaluation E 2.7. Discipline regime Compulsory

3. Total estimated time (hours/semester of didactic activities)

4. Prerequisites (if necessary)

4.1. curriculum Fundamentals of Programming, Object Oriented Programming, Data Structures and Algorithms

4.2. competencies Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course • Classroom with projector

5.2. for the seminar /lab activities
• Laboratory with computers; Java, C# and programming languages, IntelliJ
IDEA/Eclipse, Visual Studio IDE
• Classroom with projector

6.1. Specific competencies acquired 1

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

3.1. Hours per week 6 of which: 3.2 course 2
3.3
seminar/laboratory/project

2 sem
2 lab

3.4. Total hours in the curriculum 84 of which: 3.5 course 28
3.6
seminar/laboratory/project

28 +
28

Time allotment for individual study (ID) and self-study activities (SA) hours

Learning using manual, course support, bibliography, course notes (SA) 10

Additional documentation (in libraries, on electronic platforms, field documentation) 5

Preparation for seminars/labs, homework, papers, portfolios and essays 14

Tutorship 5

Evaluations 7

Other activities:

3.7. Total individual study hours 41

3.8. Total hours per semester 125

3.9. Number of ECTS credits 5

P
ro

fe
ss

io
n

a
l/

e
ss

e
n

ti
a

l
co

m
p

e
te

n
ci

e
s

• Analysis of software specifications.
• Definition of software architecture.
• Development and analysis of algorithms for solving problems.

T
ra

n
sv

e
rs

a
l

co
m

p
e

te
n

ci
e

s

• Application of rigorous and efficient work rules, manifestation of responsible attitudes towards the
didactic-scientific field, to bring optimal and creative values to own potential in specific situations,
with respect to professional ethics principles and norms.

• Showing initiative.

6.2. Learning outcomes

K
n

o
w

le
d

g
e

• The student has the necessary knowledge for the development of software programs and applications
in the Java and C# programming languages, and for the information processing.

• The student has the ability to develop, design and create new applications using best practices of the
field.

S
k

il
ls

 • The student has the ability to apply general rules to specific problems and produce relevant solutions.
• The student is able to combine diverse information to formulate solutions and develop ideas for new

products and applications.

R
e

sp
o

n
si

b
il

it
y

a

n
d

 a
u

to
n

o
m

y
:

• The student has the ability to work independently to write medium scale Java/C# programs using
GUIs and to use classes written by other programmers when constructing their systems.

• The student has the necessary skills to develop GUI applications using architectural templates suitable
for specific user interaction applications.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

• To prepare an object-oriented design of small/medium scale problems and to
learn the Java programming language, as well as to create graphical user
interfaces.

7.2 Specific objective of the
discipline

• To use object-oriented concepts in program analysis and design.
• To use and implement solutions in the Java programming language.
• To create GUI for the given requirements.
• To apply design patterns in various contexts.
• To use classes written by other programmers when constructing their
• systems.

8. Content

8.1 Course Teaching methods Remarks

1. Introduction in Java • Interactive exposure

• Platform

• Language syntax

• Data types. Arrays

• Examples

• Explanation
• Conversation
• Examples
• Didactical
demonstration

2. Classes, inheritance
• Classes
• Object construction
• Methods
• Inheritance, polymorphism
• Abstract classes, interfaces

3. Generic types, collections in Java
• Generic methods
• Type erasure
• Generic classes and subtyping
• Wildcards
• Java Collections Framework

4. Exceptions, Java I/O, JUnit
• Exceptions
• Java I/O, streams, serialization
• JUnit

5. JDBC, Functional programming
• JDBC API
• Java 8 features: Lambda expressions,

Java 8 Streams
6. Graphical User Interfaces

• JavaFX applications, scenes, layouts, UI

controls

• Events

7. Graphical User Interfaces
• Processing events
• Model-View-Controller

FXML
8. Java Reflection, Concurrency
• Java Reflection API
• Concurrency: processes, threads,

multithreaded programming in Java
9. Concurrency

• Threads in Java
• Thread synchronization
• Concurrent applications in Java

10. Design Patterns
• Creational patterns
• Structural patterns
• Behavioural patterns

Design Patterns (cont.), Introduction in C#
and .NET
11. C# and .NET

• The .NET Architecture
• The C# programming language
• Classes in C#
• Generics
• Delegates
• Events
• Lambda expressions
• LINQ

12. Revision
• Revision of the most important topics

covered by the course

• Examination guide

Bibliography

1. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley.
2. Eckel, B. Thinking in Java, 4th edition, Prentice Hall, 2006.
3. Eckel, B. Thinking in Patterns with Java, 2004. MindView, Inc.
4. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Longman Publishing, 1995.
5. The Java Tutorials: https://docs.oracle.com/javase/tutorial/
6. Joseph Albahari and Ben Albahari, C# 4.0 in a Nutshell, Fourth Edition, O’Reilley, 2010.

8.2 Seminar Teaching methods Remarks

1. Simple problems in Java. Classes.

• Interactive exposure
• Explanation
• Conversation
• Examples
• Didactical demonstration

The seminar is structured as a 2
hour class, every 2 weeks.

2. Layered architecture, generics,
inheritance.

3. Inheritance, interfaces, collections.

4. Serialization, files.

5. JDBC, Junit.

6. Java 8 streams.

7. JavaFX - Graphical User Interfaces.

8. JavaFX - Graphical User Interfaces.
FXML.

9. Concurrency, threads.

10. Design Patterns.

11. C# - layered architecture, generics,
inheritance.

12. C# - LINQ.

13. C# - Graphical User Interfaces.

14. Examination example.

8.3 Laboratory

1. Setting up JDK, JRE and JVM, as well as
an IDE of choice. Simple problems in
Java.

• Explanation
• Conversation

The laboratory is structured as a
2 hour class, every 2 weeks.

2. Layered architecture, inheritance,
generics.

3. Files, serialization, exceptions.

4. Junit, JDBC.

5. Java 8 features, Java 8 streams.

6. JavaFX - Graphical User Interfaces.

7. Laboratory test.

8. JavaFX - Graphical User Interfaces
(FXML).

9. Concurrency, threads.

10. C# - layered architecture, generics,
inheritance.

11. Laboratory test.

12. C# - LINQ.

Bibliography

1. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley.
2. Eckel, B. Thinking in Java, 4th edition, Prentice Hall, 2006.
3. Eckel, B. Thinking in Patterns with Java, 2004. MindView, Inc.
4. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Longman Publishing, 1995.

5. The Java Tutorials: https://docs.oracle.com/javase/tutorial/
6. Joseph Albahari and Ben Albahari, C# 4.0 in a Nutshell, Fourth Edition, O’Reilley, 2010.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

• The course follows the ACM Curricula Recommendations for Computer Science studies.
• The content of the course is considered by the software companies as important for average software

development skills.

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.4 Course

The correctness and
completeness of the
accumulated knowledge
and the capacity to design
and
implement correct Java
programs.

Written examination
(examination session)

30%

10.5 Seminar/laboratory

Ability to use course
concepts in solving real
problems.

Practical examination
(examination session)

30%

Correctness of delivered
laboratory assignments
and laboratory tests.

Laboratory assignments.
Laboratory test.
Observation during the
semester.

40%

10.6 Minimum standard of performance

• Each student has to prove that they acquired an acceptable level of knowledge and understanding of the core
concepts taught in the class, that they are capable of using knowledge in a coherent form, that they have the
ability to establish certain connections and to use the knowledge in solving different problems in Java.

• For participating at the examination attendance is compulsory for seminar and for laboratory activities, as
follows: minimum 5 attendances for seminar and minimum 6 attendances for laboratory activities.

• Successfully passing of the examination is conditioned by a minimum grade of 5 for each of the following:
practical examination, written examination and final grade.

11. Labels ODD (Sustainable Development Goals)2

Not applicable.

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the

discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no

label describes the discipline, delete them all and write „Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

Date:
15.04.2025

Signature of course coordinator

Assoc. Prof. PhD. Bocicor Maria Iuliana

Signature of seminar coordinator

Assoc. Prof. PhD. Bocicor Maria Iuliana

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

