SYLLABUS

Graph Algorithms

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Artificial Intelligence
1.7. Form of education	Full Time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Graph Alg	Graph Algorithms				Discipline	code	MLE5025
2.2. Course coordinator				Mihai Andrei					
2.3. Seminar coordinator				Μ	lihai An	drei			
2.4. Year of study	1	2.5. Semester	2	2.6. Type of evaluation	on	С	2.7. Discipline regi	me	Mandatory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and	self-study activities (S	A)		hours
Learning using manual, course support,	bibliogra	aphy, course notes (SA)			15
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					
Evaluations					4
Other activities:				3	
3.7. Total individual study hours69					
3.8. Total hours per semester	125				
3.9. Number of ECTS credits	5				

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
4.2. competencies	Average skills in analysis and design of algorithms and data structures, including implementing them in a programming language. Basic knowledge of Python programming language.

5. Conditions (if necessary)

5.1. for the course					
5.2. for the seminar /lab activities	Laboratory with computers; with Python developing environment.				
(1 Specific competencies acquired ¹					

6.1. Specific competencies acquired

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	 create software define the process
Transversal competencies	• think analytically

6.2. Learning outcomes

Knowledge	The graduate knows, understands and applies the basic concepts and the fundamental algorithms of Artificial Intelligence and is able to evaluate them based on metrics.
Skills	The graduate is able to evaluate, both quantitatively and qualitatively, the performance of intelligent systems. The graduate is able to design and implement software systems that are using methods of Artificial intelligence and to evaluate their performance.
Responsibility and autonomy:	

٦

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowing the graph theoretical concepts and using these concepts in the problem modelling. Knowing how to implement the graph algorithms in a programming language.
7.2 Specific objective of the discipline	 Analysing the issues around the main topics of graph: connectivity, shortest paths, modelling prerequisites and activity planning, flows, traveling salesman problem, planar graphs

8. Content

8.1 Course	Teaching methods	Remarks
 Basic graph theory definitions (graph, multigraph, directed graph/multigraph, walk, trail, path), basics on graph representations 	Exposure, description, explanation, examples, debate	

 Pseudocode. Walks. Graph measurements: length, distance, diameter, eccentricity, radius, center. Traversals. 		Exposure, description, explanation, examples, debate	
3.	Minimum-cost walk in a graph. Dijkstra's algorithm (classic), Uniform cost search algorithm (Dijkstra variant),	Exposure, description, explanation, examples, debate	
4.	Heuristics, Best First Search, A* and Greedy Search.	Exposure, description, explanation, examples, debate	
5.	Bellman-Ford algorithm. Floyd-Warshall algorithm. Subgraphs. Connectivity, connected and strongly- connected components.	Exposure, description, explanation, examples, debate	
6.	Trees and forests. Minimum spanning trees. Kruskal and Prim algorithms.	Exposure, description, explanation, examples, debate	
7.	Dependency graphs. Topological sorting algorithms. Matchings. Maximum matching in a bipartite graph algorithm.	Exposure, description, explanation, examples, debate	
8.	Eulerian cycle. Planar graphs: Euler's relation, K5 and K3,3 graphs, relations between number of edges and vertices.	Exposure, description, explanation, examples, debate	
9.	NP-complete problems. Hamiltonian cycle, Traveling Salesman Problem.	Exposure, description, explanation, examples, debate	
10	• Other hard problems: clique, vertex cover, colouring.	Exposure, description, explanation, examples, debate	
11.	. Transport networks. Maximum flow. Ford-Fulkerson algorithm.	Exposure, description, explanation, examples, debate	
12	. Maximum flow of minimum cost.	Exposure, description, explanation, examples, debate	
13	. Large graphs analysis.	Large graphs analysis.	
Written	examination.	Written examination.	
Bibliog Santosh K. Erciy T. Toad K. Erciy Shimon Saidur Thomas	raphy n Kumar Yadav, Advanced Graph Theory, Springer, 200 res, Algebraic Graph Algorithms - A Practical Guide Us ere, Grafe. Teorie, algoritmi si aplicatii, Editura Albast res, Guide to Graph Algorithms - Sequential, Parallel a n Even and Guy Even, Graph Algorithms 2nd edition, 2 Rahman, Basic Graph Theory, Springer, 2017. s H. Cormen et. al, Introduction to Algorithms, third e	23. sing Python, Springer, 2021. tra, 2009. and Distributed, Springer, 2018. 2012. edition, 2009, MIT Press.	
8.2 Sen	ninar / laboratory	Teaching methods	Remarks
Graph r	epresentations	Exposure, description, explanation, examples, debate	
More or	n graph representations. Iterators and traversals.	Exposure, description, explanation, examples, debate	
Minimu	ım cost walks.	Exposure, description, explanation, examples, debate	
Depend	ency graphs. Minimum spanning trees. Connectivity.	Exposure, description, explanation, examples, debate	
Euleriar	ı circuits. Homeomorphism. Bipartite matching.	Exposure, description, explanation, examples, debate	
NP-com	iplete problems.	Exposure, description, explanation, examples, debate	
Finishir	ng the lab activity.	Exposure, description, explanation, examples, debate	
Bibliog Santosh K. Erciy T. Toado K. Erciy	raphy 1 Kumar Yadav, Advanced Graph Theory, Springer, 201 res, Algebraic Graph Algorithms - A Practical Guide Us ere, Grafe. Teorie, algoritmi si aplicatii, Editura Albas res, Guide to Graph Algorithms - Sequential, Parallel a	23. sing Python, Springer, 2021. tra, 2009. .nd Distributed, Springer, 2018.	

K. Erciyes, Guide to Graph Algorithms - Sequential, Parallel and Distributed, Sp Shimon Even and Guy Even, Graph Algorithms 2nd edition, 2012. Saidur Rahman, Basic Graph Theory, Springer, 2017. Thomas H. Cormen et. al, Introduction to Algorithms, third edition, 2009, MIT Press.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies; The course exists in the studying program of all major universities in Romania and abroad

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade				
10.4 Course	 know the basic principles of the domain apply the course concepts problem solving 	Written exam	60%				
10.5 Seminar/laboratory	be able to implement course concepts and algorithms	Verifying the practical works.	40%				
10.6 Minimum standard of performance							
• At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.							

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date: 04.04.2025

Signature of course coordinator

Signature of seminar coordinator

Date of approval:

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable.*".