SYLLABUS

Data Structures and algorithms

University year 2025- 2026

1. Information regarding the programme

1.1. Higher education institution	Babeş – Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Artificial Intelligence
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	cipli	ne Data Stru	Data Structures and algorithms					Discipline code	MLE5022
2.2. Course coordinator				Lec	ct. PhI	D. Hotea D	Diana – Lucia		
2.3. Seminar coordinator				Lec	ct. PhI	D. Hotea D	Diana – Lucia		
2.4. Year of study	1	2.5. Semester	Semester 2 2.6. Type of evaluat			Е	2.7. Disc	cipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1S + 1LP	
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28	
Time allotment for individual study (ID) and self-study activities (SA)				hours		
Learning using manual, course support,	Learning using manual, course support, bibliography, course notes (SA)					
Additional documentation (in libraries, on electronic platforms, field documentation)					4	
Preparation for seminars/labs, homework, papers, portfolios and essays					35	
Tutorship					5	
Evaluations					5	
Other activities:	Other activities:					
3.7. Total individual study hours 69						
3.8. Total hours per semester	125					
3.9. Number of ECTS credits	5					

4. Prerequisites (if necessary)

1.11 crequisites (if necessary)				
4.1. curriculum	Computer programming and programming languages			
4.2. competencies	Medium programming skills			

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab activities	

6.1. Specific competencies acquired

Professional/essential competencies	 create data models create software
Transversal competencies	 show initiative think analytically

6.2. Learning outcomes

Knowledge	The student knows: • The graduate has the necessary knowledge for the use of computers, the development of software programs and applications, and for the information processing.
Skills	 The student is able to: The graduate has the ability to develop, design and create new applications, systems or products using best practices in the field of Computer Science. The graduate is able to identify complex issues and examine related issues in order to design several solutions and implement these solutions.
Responsibility and autonomy:	The student has the ability to work independently to obtain: • The graduate is able to combine diverse information to formulate solutions and develop development ideas for new products and applications.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Study of data structures that can be used to implement abstract data types (arrays, linked lists, heaps, hash tables, binary trees)
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure libraries.

8. Content

0.1 Course	Too ahing mathada	Domonko
8.1 Course	Teaching methods	Remarks
1. Data structures. Abstract Data Types.		
Algorithm analysis	- Exposure	
Abstract Data Types and Data	- Description	
Structures	- Examples	
 Pseudocode conventions 	- Didactical demonstration	
 Complexities 		
2. Arrays. Iterators	- Exposure	
 Dynamic array 	- Description	
 Amortized complexity analysis 	 Conversation 	
 Interface of an iterator 	 Didactical demonstration 	
3. Linked Lists	T.	
 Singly linked list: representation and 	- Exposure	
operations	- Description	
Doubly linked list: representation and	- Conversation	
operations	- Didactical demonstration	
Iterator for linked lists	- Case study	
4. Abstract Data Types		
ADT Set: description, domain,		
interface and possible representations	- Exposure	
ADT Map: description, domain,	- Description	
interface and possible representations	- Conversation	
ADT Matrix: description, domain,	- Didactical demonstration	
interface and possible representations		
5. Linked Lists II		
Sorted linked lists: representation and	- Exposure	
operations	- Description	
 Linked lists on arrays: representation 	- Conversation	
and operations	 Didactical demonstration 	
6. Abstract Data Types II		
ADT List: description, domain,		
interface and possible representations	- Exposure	
ADT Stack: description, domain,	- Description	
interface and possible representations	- Conversation	
ADT Queue: description, domain,	 Didactical demonstration 	
interface and possible representations	 Case studies 	
interface and possible representations		
7. Hash Table		
Direct address tables	- Exposure	
 Hash tables: description, properties 	- Description	
 Collision resolution through separate 	- Conversation	
chaining	- Didactical demonstration	
8. Hash Table II		
Collision resolution through coalesced	- Exposure	
chaining	- Description	
 Collision resolution through open 	- Conversation	
addressing	- Didactical demonstration	
9. Trees. Binary Trees		
 Concepts related to trees 		
Applications of trees	- Exposure	
 Applications of trees Possible representations	- Description	
 Tree traversals 	- Conversation	
	- Didactical demonstration	
Description and properties of binary troop	- Didactical delliblisti atibli	
trees		
Domain and interface of ADT Binary		

Tree	
 Binary Trees II Possible representations of ADT Binary Tree Binary tree traversals: recursive/non-recursive algorithms 	- Exposure - Description - Conversation - Didactical demonstration
 11. Binary Heap Definition, representations, sepcific operations HeapSort 	 Exposure Description Conversation Didactical demonstration Case studies
 12. ADT Priority Queue Description, domain and interface Possible representations Implementation on heap 	ExposureDescriptionConversationDidactical demonstration
 13. Balanced Binary Search Trees Binary Search Trees AVL Trees 	ExposureDescriptionConversationDidactical demonstration
14. Applications of the studied DS	- Conversation - Debate

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Third Edition, 2010
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. Narasimha Karumanchi, Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition, 2016

5. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

8.2 Laboratory	Teaching methods	Remarks
		Laboratory is structured as 2 hour classes every second week. Laboratory problems assigned at a lab have to be presented in the next lab (excepting the first lab assignemnt). Every laboratory focuses on a given data structure. Students will receive a container (ADT) that has to be implemented using the given data structure.
Lab1. Discussion about solving lab problems	- Exposure - Examples - Conversation	
Lab 2. Dynamic array	ExposureExamplesConversation	To be presented at Lab 3
Lab 3. Linked lists with dynamic allocation	ExposureExamplesConversation	
Lab 4. Linked lists on array	ExposureExamplesConversation	
Lab 5. Hash Table	ExposureExamplesConversation	
Lab 6. Binary Search Tree	ExposureExamplesConversation	
Lab 7. Presentation of problem from Lab 6	ExposureExamplesConversation	

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Third Edition, 2010
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. Narasimha Karumanchi, Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition, 2016

5. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

8.3 Seminar	Teaching methods	Remarks
		Seminar is structured as 2 hour classes every second week.
ADT Bag with generic elements. Representations and implementation on an array. Iterator for ADT Bag	ExposureConversationExamplesDebate	
2. Complexities	ExposureConversationExamplesDebate	
3. Bucket sort, Lexicographic sort, radix sort. Merging two sorted singly linked lists.	ExposureConversationExamplesDebate	
4. Sorted MultiMap – representation and implementation on a singly linked list	ExposureConversationExamplesDebate	
5. Hash tables. Collision resolution through coalesced chaining	ExposureConversationExamplesDebate	
6. Binary trees.	ExposureConversationExamplesDebate	
7. Problems solved with heaps	ExposureConversationExamplesDebate	

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Third Edition, 2010
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. Narasimha Karumanchi, Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition. 2016
- 5. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

 $9. \ Corroborating \ the \ content \ of \ the \ discipline \ with \ the \ expectations \ of \ the \ epistemic \ community, \ professional \ associations \ and \ representative \ employers \ within \ the \ field \ of \ the \ program$

- The content of this discipline is consistent with the content of the Data structures courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	 Correctness and completeness of the assimilated knowledge Knowledge of applying the concepts 	Written evalution (in the exam session): written exam	70%
10.5 Laborator	 C++ implementation of the concepts and algorithms presented at the lectures Lab assignment documentation Respecting the deadlines for lab presentation 	Correctness of the implementation and documentation (representation, specifications, algorithms, complexities).	30%
10.6 Seminar	Activitatea de seminar	Evaluarea activității de seminar – maximum 0.5 puncte bonus pentru activitate în timpul seminarelor.	

10.7 Minimum standard of performance

- Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.
- For participating at the written exam, a student must have at least 6 lab attendances and 5 seminar attendances.
- For successfully passing the examination, a student must have at least 5 as a final grade.

11. Labels ODD (Sustainable Development Goals)¹

Not	аррі	licable.
-----	------	----------

_

¹ Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.

Date:	
15.04.2025	

Signature of course coordinator

Lect. PhD. Diana – Lucia HOTEA

Signature of seminar coordinator

Lect. PhD. Diana – Lucia HOTEA

Date of approval:

•••

Signature of the head of department

Assoc.prof.phd. Adrian STERCA