
SYLLABUS

Object Oriented Programming
University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution Babeş-Bolyai University

1.2. Faculty Faculty of Mathematics and Computer Science

1.3. Department Department of Computer Science

1.4. Field of study Computer Science

1.5. Study cycle Bachelor

1.6. Study programme/Qualification Artificial Intelligence

1.7. Form of education Full time

2. Information regarding the discipline

2.1. Name of the discipline Object oriented programming Discipline code MLE5006

2.2. Course coordinator Lect. PhD Diana Laura Borza

2.3. Seminar coordinator Lect. PhD Diana Laura Borza

2.4. Year of study 1 2.5. Semester 2 2.6. Type of evaluation E 2.7. Discipline regime Compulsory

3. Total estimated time (hours/semester of didactic activities)

4. Prerequisites (if necessary)
4.1. curriculum ●​ Fundamentals of programming
4.2. competencies ●​ Average programming skills in a high-level programming language

5. Conditions (if necessary)
5.1. for the course ●​ Class room with projector

5.2. for the seminar /lab activities
●​ Laboratory with computers, having a C++ compiler, a C++ IDE (preferably

Visual Studio) and Qt library installed

6. Specific competencies acquired 1

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

3.1. Hours per week 5 of which: 3.2 course 2
3.3
seminar/laboratory/project

1 sem
2 lab

3.4. Total hours in the curriculum 70 of which: 3.5 course 28
3.6
seminar/laboratory/project

42

Time allotment for individual study (ID) and self-study activities (SA) hours

Learning using manual, course support, bibliography, course notes (SA) 24

Additional documentation (in libraries, on electronic platforms, field documentation) 15

Preparation for seminars/labs, homework, papers, portfolios and essays 19

Tutorship 9

Evaluations 13

Other activities:

3.7. Total individual study hours 80

3.8. Total hours per semester 150

3.9. Number of ECTS credits 6

Professional/essential
competencies

●​ supervise software development
●​ analyze software specifications
●​ provide technical documentation
●​ use application-specific interfaces
●​ develop the prototype for the software

Transversal
competencies

Students:
●​ show initiative
●​ work in teams
●​ assume responsibility
●​ think analytically

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

●​ To understand the concepts of the object-oriented programming paradigm and
to design object-oriented solutions of small/medium scale problems, using C++
and Qt.

7.2 Specific objective of the
discipline

●​ To demonstrate the differences between traditional imperative design and
object-oriented design.

●​ To explain class structures as fundamental, modular building blocks.
●​ To understand the role of inheritance, polymorphism, dynamic binding and

generic structures in building reusable code.
●​ To explain and to use defensive programming strategies, employing formal

assertions and exception handling.
●​ To design user- interfaces and write small/medium scale C++ programs using

Qt.
●​ To use classes written by other programmers and third-party libraries when

constructing their systems.

8. Content

8.1 Course Teaching methods Remarks
1.​ C/C++ introduction (basic elements of

C/C++ programming language, data types,
constant variables, scope and lifetime of the
variables, statements, functions: declaration
and definition, overloading functions).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

2.​ Modular programming in C/C++
(functions, formal and actual parameters,
pointers and memory management, the stack
and the help, pointers to functions, header
files, modular programming, libraries).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

3.​ Object oriented programming in C++
(introduction to object oriented
programming, object oriented programming
features, abstraction, encapsulation, classes
and objects, access modifiers, object creation
and destruction, operator overloading, static
and friend elements).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

4.​ Inheritance and polymorphism (base and
derived classes, Liskov substitution
principle, method overriding, inheritance
and polymorphism).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

5.​ Polymorphism (static and dynamic binding,
virtual methods, multiple inheritance,

●​ Interactive exposure
●​ Explanation
●​ Conversation

upcasting and downcasting, abstract classes,
UML class diagrams and relations).

●​ Examples
●​ Didactical demonstration

6.​ Templates in C++. The C++ Standard
Template Library (function templates, class
templates, containers in STL: array, vector,
list, stack, heap, map, set), iterators, STL
algorithms, lambda functions.

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

7.​ Streams and exception handling (input
output streams, insertion and extraction
operators, overloading insertion and
extraction operators, formatting,
manipulators, flags, text files, exception
handling, exception safe code).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

8.​ Resource management and RAII (Resource
Acquisition Is Initialization (RAII), smart
pointers, move semantics, smart pointers in
STL: std::unique_ptr, std::shared_ptr,
std::weak_ptr)

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

9.​ Graphical User Interfaces (Qt Toolkit:
installation, Qt modules and instruments, Qt
GUI components, Layout management,
design interfaces using Qt Designer).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

10.​ Event driven programming I (callbacks,
events, signals and slots in Qt).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

11.​ Event driven programming II (Model View
Controller, Models and Views in Qt, using
predefined models, implementing custom
models).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

12.​ Design patterns I (creational, structural,
behavioral patterns, examples, singleton,
factory method, adapter pattern).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

13.​ Design patterns II (façade pattern, observer
pattern, strategy pattern, case study
application and examples).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

14.​ Revision (revision of the most important
topics covered by the course, examination
guide).

●​ Interactive exposure
●​ Explanation
●​ Conversation
●​ Examples
●​ Didactical demonstration

Bibliography
1. B. Stroustrup. The C++ Programming Language, Addison Wesley, 1998.
2. Bruce Eckel. Thinking in C++, Prentice Hall, 1995.
3. A. Alexandrescu. Programarea modernă în C++: Programare generică și modele de proiectare
aplicate, Editura Teora, 2002.
4. S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition),
Addison-Wesley, 2005.
5. S. Meyers. More effective C++: 35 New Ways to Improve Your Programs and Designs, Addison-Wesley, 1995.
6. B. Stroustrup. A Tour of C++, Addison-Wesley, 2013.
7. C++ reference (http://en.cppreference.com/w/).
8. Qt Documentation (http://doc.qt.io/qt-5/).
9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Longman Publishing, 1995.

8.2 Seminar / laboratory Teaching methods Remarks

Seminar
1.​ Simple problems in C. Functions. Structures,

enums and arrays.
●​ Interactive exposure
●​ Explanation
●​ Conversation

The seminar is structured
as a 2 hour class, every 2
weeks.

2.​ Modular programming. ●​ Interactive exposure
●​ Explanation
●​ Conversation

3.​ Classes. Operator overloading. User-defined
objects as class data members.

●​ Interactive exposure
●​ Explanation
●​ Conversation

4.​ Inheritance. Polymorphism. Templates. ●​ Interactive exposure
●​ Explanation
●​ Conversation

5.​ Files, exceptions. STL containers, iterators,
algorithms.

●​ Interactive exposure
●​ Explanation
●​ Conversation

6.​ Graphical User Interfaces. ●​ Interactive exposure
●​ Explanation
●​ Conversation

7.​ Implementation based on UML diagrams.
Design patterns.

●​ Interactive exposure
●​ Explanation
●​ Conversation

Bibliography
1. B. Stroustrup. The C++ Programming Language, Addison Wesley, 1998.
2. Bruce Eckel. Thinking in C++, Prentice Hall, 1995.
3. A. Alexandrescu. Programarea modernă în C++: Programare generică și modele de proiectare
aplicate, Editura Teora, 2002.
4. S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition),
Addison-Wesley, 2005.
5. S. Meyers. More effective C++: 35 New Ways to Improve Your Programs and Designs, Addison-Wesley, 1995.
6. B. Stroustrup. A Tour of C++, Addison-Wesley, 2013.
7. C++ reference (http://en.cppreference.com/w/).
8. Qt Documentation (http://doc.qt.io/qt-5/).
9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Longman Publishing, 1995.
Laboratory

1.​ Environment setup (installing a C++
compiler and an IDE). C/C++ basics.

●​ Explanation
●​ Conversation

The laboratory is
structured as weekly 2
hour classes.

2.​ Introductory problems (in C). ●​ Explanation
●​ Conversation

3.​ Feature-driven software development
process. Layered architecture. Test driven
development. Modular programming

●​ Explanation
●​ Conversation

4.​ Classes and objects in C++. Copy
constructors, assignment operators,
destructors.

●​ Explanation
●​ Conversation

5.​ Inheritance. Method overriding. ●​ Explanation
●​ Conversation

6.​ Inheritance and polymorphism. Virtual
methods.

●​ Explanation
●​ Conversation

7.​ Laboratory test. Practical test

8.​ STL containers, iterators and algorithms. ●​ Explanation
●​ Conversation

9.​ Streams, overloading the insertion and
extraction operators, persistence.

●​ Explanation
●​ Conversation

10.​ Exception handling. Testing. ●​ Explanation
●​ Conversation

11.​ Qt Graphical User Interfaces I. ●​ Explanation
●​ Conversation

12.​ Qt Graphical User Interfaces II. Signals and
slots in Qt.

●​ Explanation
●​ Conversation

13.​ Design patterns. ●​ Explanation
●​ Conversation

14.​ Laboratory test. Practical test

Bibliography
1. B. Stroustrup. The C++ Programming Language, Addison Wesley, 1998.
2. R. Gilberg. C++ Programming: An Object-Oriented Approach, McGraw-Hill Education, 2019
3. A. Alexandrescu. Programarea modernă în C++: Programare generică și modele de proiectare
aplicate, Editura Teora, 2002.
4. S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition),
Addison-Wesley, 2005.
6. B. Stroustrup. A Tour of C++, Addison-Wesley, 2013.
7. C++ reference (http://en.cppreference.com/w/).
8. Qt Documentation (http://doc.qt.io/qt-5/).
9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Longman Publishing, 1995.​
10. Bruce Eckel. Thinking in C++, Prentice Hall, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

●​ The course respects the ACM Curricula Recommendations for Computer Science studies.
●​ The course exists in the studying program of all major universities in Romania and abroad.
●​ The content of the course is considered by the software companies as important for average object-oriented

programming skills.

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.4 Course

The correctness and
completeness of the
accumulated knowledge
and the capacity to design
and implement correct C++
programs.

Written examination
(regular session).

60%

10.5 Seminar/laboratory

Ability to design,
implement, test and debug
a C++ program with a
graphical user interface.

Practical evaluation. Two
tests during the semester.

20%

Project. Design, implementation
and testing of a
small-medium application
that uses a 3-tier
architecture.
Documentation

20%

10.6 Minimum standard of performance

●​ Students must prove that they acquired an acceptable level of knowledge and understanding of the core
concepts taught in the class, that they are capable of using this knowledge in a coherent form, that they have the
ability to establish certain connections and to use the knowledge in solving small/medium scale problems using
object-oriented programming in C++.

●​ Successfully passing the examination is conditioned by a minimum grade of 5 (no rounding) for the laboratory
practical test, the laboratory assignment and written examination.

●​ Attendance is mandatory for 5 seminar sessions and 12 laboratory sessions.

11. Labels ODD (Sustainable Development Goals)2

Not applicable.

Date:

April 27, 2025.

Signature of course coordinator

Lect. PhD. Diana Laura Borza

Signature of seminar coordinator

Lect. PhD. Diana Laura Borza

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the
discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no
label describes the discipline, delete them all and write „Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

