SYLLABUS

Machine learning

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	High performance computing and Big Data Analytics
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Machine l	Machine learning						MME8042
2.2. Course coordinator					Prof. PhD Czibula Gabriela				
2.3. Seminar coordinator					Prof. PhD Czibula Gabriela				
2.4. Year of study	1	2.5. Semester	1	2.6. Type of evaluation	on	Е	2.7. Dis	cipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 sem+ 1 pr	
3.4. Total hours in the curriculum 56 of which: 3.5 course 28 3.6 seminar/laboratory/project						
Time allotment for individual study (ID) and self-study activities (SA)						
Learning using manual, course support, bibliography, course notes (SA)						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship					6	
Evaluations						
Other activities:						
3.7. Total individual study hours94						
3.8. Total hours per semester	Total hours per semester150					
3.9. Number of ECTS credits 6						

4. Prerequisites (if necessary)

H. I rerequisites (in necessary)					
4.1. curriculum	Artificial Intelligence				
4.2. competencies	Programming skills				

5. Conditions (if necessary)

5.1. for the course	Classroom with a projector
5.2. for the seminar /lab activities	

6.1. Specific competencies acquired ¹

Professional/essential competencies	 Capability of analysis and synthesis; Understanding and acquisition of methods of modeling, optimization, analysis of massive datasets, an data visualization techniques; Efficient modeling and solving real-life problems. 	ıd
Transversal competencies	 Etic and fair behavior, committment to professional deontology; Team work capabilities; able to fulfil different roles. 	

6.2. Learning outcomes

Knowledge	 The student knows: the basic principles, techniques, and applications of Machine Learning; ethical and deontological norms and rules in scientific research.
Skills	 The student is able to: use novel algorithms, software infrastructures and methodologies for the purpose of processing (store, retrieve, analyze) large amounts of data; handle (extremely) large amounts of digital data in various formats (text, video, financial, medical, etc.).
Responsibility and autonomy:	 The student has the ability to work independently to: develop applications and services for various business domains based on the results of big data analysis; translate academic knowledge into a professional, economic, social and ethical context.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To provide the principles, techniques, and applications of Machine Learning.				
7.2 Specific objective of the discipline	 To cover the principles, design, implementation and validation of learning programs which improve their performance on some set of tasks by experience. To offer a broad understanding of machine learning algorithms and their use in data-driven knowledge discovery and program synthesis. To offer an understanding of the current state of the art in machine learning in order to conduct original research in machine learning. 				

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in Machine Learning.	Interactive exposure	
• Issues in Machine Learning	Explanation	
• Designing a learning system	Conversation	
• Examples	Didactical demonstration	
2. Statistical foundations	• Interactive evenesure	
Event space and Probability function	Explanation	
Elementary Information Theory	Conversation	
Examples	Didactical demonstration	
3 Decision Tree learning		
Decision tree representation		
 ID3 learning algorithm 		
Statistical massures in	Interactive exposure	
decision tree learning:	Explanation	
entropy, information	 Conversation Didactical demonstration 	
gain		
Issues in DT learning		
Applications		
4. Artificial Neural Networks		
Neural Network representations		
Appropriate problems for		
Neural Network Learning		
Perceptrons		
Multilayer	Interactive exposure	
Networks and	Explanation	
the Backpropagati	Conversation	
on algorithm	Didactical demonstration	
Advanced		
topics in		
Artificial		
Neural		
Networks		
5. Support Vector machines	Interactive exposure	
Main idea	Explanation	
Linear SVMs	Conversation	
Non-linear SVMs	Didactical demonstration	
Applications		
6. Bayesian learning	Interactive exposure	
Specific problems	Explanation	
Bayes theorem	Conversation	
Naive Bayes Classifier	Didactical demonstration	
7. Instance based learning		
• <i>k</i> -Nearest Neighbor learning	Interactive exposure	
Locally weighted regression	Explanation	
Radial basis functions	Conversation	
Case based reasoning	Didactical demonstration	
Applications		
8. Unsupervised learning	Interactive exposure	
Cluster analysis	Explanation	
	 Conversation 	

 Self organizing maps Hebbian learning Applications 	•	Didactical demonstration	
 9. Reinforcement Learning The reinforcement learning task Markov Decision Processes Q-learning Temporal Difference learning Applications 	• • •	Interactive exposure Explanation Conversation Didactical demonstration	
ML research reports presentation	•	Interactive exposure Conversation Oral assessment	

Bibliography

1. Mitchell, T., Machine Learning, McGraw Hill, 1997

2. Russell, J.S, Norvig, P., Artificial Intelligence- A Modern Approach, Prentice- Hall, Inc., New Jersey, 1995

- 3. Sutton, R.S., Barto, A.G., Reinforcement learning, The MIT Press Cambridge, Massachusetts, London, England, 1998
- 4. Gabriela Czibula, Sisteme inteligente. Instruire automata, Ed. Risoprint, Cluj-Napoca, 2008

5. Manning, C., Schutze, H., Foundations of Statistical NLP, MIT Press, 2002

6. Cristiani, N., Support Vector and Kernel Machines, BIOwulf Technologies, 2001

7. Nillson, N., Introduction to Machine Learning, Stanford University, 1996

8.2 Seminar / laboratory	Teaching methods	Remarks
		The activity is structured as 2
		hours classes every
1. Administration of labs. Survey of the sources	• Interactive exposure	
of information available on Internet and	Explanation	
Intranet	Conversation	
2. Survey of the sources of information	Documentation	
available on Internet and Intranet; choosing the namer tonic and scheduling the presentation	Explanation	
paper topic and scheduling the presentation.	Conversation	
A software project will be fully implemented,		
without using existing ML environments.		
3. Problem definition	• Lab assignment	
	• Explanation	
	Conversation	
4-5. Comments about the solution, problem	• Lab assignment	
analysis and related work	• Explanation	
	Conversation	
6-7. Design documentation; the electronic	• Lab assignment	
version of the source code, test files and any	• Explanation	
Project 2demonstration	Conversation	
Bibliography		

1. Mitchell, T., Machine Learning, McGraw Hill, 1997

2. Sutton, R.S., Barto, A.G., Reinforcement learning, The MIT Press Cambridge, Massachusetts, London, England, 1998 3. Gabriela Czibula, Sisteme inteligente. Instruire automata, Ed. Risoprint, Cluj-Napoca, 2008

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other Romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the machine learning field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade

10.4 Course	A theoretical research report on a learning technique, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	40%
	The correctness and completeness of the accumulated knowledge.	Oral assessment	
10.5 Seminar/laboratory	A software project implemented using a ML framework	Evaluation of the project (software implementation, documentation and demonstration)	15%
	A software project fully implemented, without using existing ML environments.	Evaluation of the project (software implementation, documentation and demonstration)	25%
10.6 Activity	Class attendance (elctures, labs) and activity		15%
10.7 Minimum standard of performance			

• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the Machine Learning domain, that (s)he is capable of stating this knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

• Successful passing of the exam is conditioned by the final grade that has to be at least 5.

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date:Signature of course coordinatorSignature of seminar coordinator03.04.2025Prof. PhD Gabriela CZIBULAProf. PhD Gabriela CZIBULA

Date of approval:

Signature of the head of department

Assoc. prof. PhD. Adrian STERCA

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.