SYLLABUS

Statistical Computational Methods

University year 2025-2026

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University			
1.2 Faculty	aculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Data Science for Industry and Society (Știința datelor în industrie și			
Qualification	societate)			
1.7 Form of education	Full-Time			

2. Information regarding the discipline

2.1 Name of the discipline			Statistical Computational Methods		C	iscipline code	MME8088
2.2 Course coordinator Prof. Sanda Micula, PhD.). Hab	il.	
2.3 Seminar coordinator P				Prof. Sanda Micula, PhD. Habil.			
2.4. Year of study	2	2.5 Semester	3	2.6. Type of evaluation	E	2.7 Type of	DC Optional
						discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 cour	se	2	3.3 seminar/laboratory	1S + 1P
3.4 Total hours in the curriculum56Of which: 3.5 course283.6 seminar/laboratory						28
Time allotment for individual study (ID) and self-study activities (SA)					hours	
Learning using manual, course support	, bib	liography, course n	tes	(SA)		35
Additional documentation (in libraries, on electronic platforms, field documentation)					15	
Preparation for seminars/labs, homework, papers, portfolios and essays					32	
Tutorship					14	
Evaluations					23	
Other activities:					-	
3.7 Total individual study hours 119					•	
3.8 Total hours per semester 175						

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Probability and Statistics
4.2. competencies	Logical thinking
	Average logical programming skills

7

5. Conditions (if necessary)

5.1. for the course	Lecture room with large blackboard and video projector
5.2. for the seminar /lab	For seminar: Laboratory with Matlab installed

6. Specific competencies acquired

0.0000	
Professional competencies	C4.3 Identifying the appropriate models and methods for solving real-life problems C4.4 Using simulations in order to study and elaborate models and evaluate their performance
Transversal competencies	CT1 Ability to conform to the requirements of organized and efficient work, to develop a responsible approach towards the academic and scientific fields, in order to make the most of one's own creative potential, while obeying the rules and principles of professional ethic CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquire basic knowledge of Probability Theory and Mathematical Statistics applications and models
7.2 Specific objective of the discipline	 Ability to use Monte Carlo methods and simulations for solving real-life problems and perform statistical analysis of data Become familiar and be able to work with various probabilistic and statistical models Ability to use statistical features of various mathematical software

8.1 Course	Teaching methods	Remarks
 Review of Probability and Statistics. Probabi space. Rules of probability. Conditional probability. Probabilistic models. Random variables and random vectors. 	lity Interactive exposure Explanation Conversation Didactical demonstration 	
 Common discrete and continuous distribution PDF and CDF. Examples, applications, properties. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Random samples. Sample functions. Estimate Confidence intervals. Hypothesis and significance testing. 	 Interactive exposure Explanation Conversation 	
 Computer simulations and Monte Carlo methods. MC methods and random number generators. Discrete methods. Examples. 	 Interactive exposure Explanation Conversation Description 	
 Inverse transform and discrete inverse transform method. Rejection method. Specia methods. Examples. 	Interactive exposure	
 Accuracy of an MC study. Estimating probabilities, means, variances. Size of an MC study. Other applications of MC methods. 	 Interactive exposure Explanation Conversation Didactical demonstration 	

_			
/.	Stochastic processes. Definitions, classifications.	Interactive exposure	
	Markov processes and Markov chains.	Explanation	
	Transition probability matrix. Properties,	Conversation	
	examples.	Description	
8.	, 3	 Interactive exposure 	
	chains. Periodic Markov chains. Simulation of	 Explanation 	
	Markov chains.	 Conversation 	
		 Didactical demonstration 	
9.	Counting processes. Binomial and Poisson	 Interactive exposure 	
	counting processes. Gamma-Poisson formula.	 Explanation 	
	Simulation of counting processes. Examples.	Conversation	
		 Didactical demonstration 	
10.	Queuing systems. Basic notions, main	 Interactive exposure 	
	components, Little's law. Bernoulli single-server	Explanation	
	QS. Systems with limited capacity.	Conversation	
11.	M/M/1 QS. Evaluation of a system's	Interactive exposure	
	performance. Examples.	Explanation	
		Conversation	
		Didactical demonstration	
12.	Multiserver QS's. Bernoulli k-server and M/M/k	Interactive exposure	
	QS's. M/M/∞ QS's. Simulation of QS's.	Explanation	
		Conversation	
13.	Statistical inference. Nonparametric tests, Chi-	Interactive exposure	
10.	square-tests, Wilcoxon tests. Bootstrapping.	Explanation	
	Applications, examples, simulations.	Conversation	
		Description	
14	Regression and correlation. Fitting models.	Interactive exposure	
± ··	Analysis of variance (ANOVA), prediction.	Explanation	
	Examples.	Conversation	
		 Didactical demonstration 	
Bibliog	ranhy	- Diddetiedi demonstration	
1.	Micula, S., Probability and Statistics for Computat	ional Sciences, Clui University Press, 20	09.
2.	Baron, M., Probability and Statistics for Computer		
	Boca Raton, FL, 2019.	,,,,,	· •··•·,
3.	Milton, J.S., Arnold, J. C., Introduction to Probabili	ty and Statistics: Principles and Applica	tions for
	Engineering and the Computing Sciences, 3rd Edit		
4.	Gentle, J. E., Elements of Computational Statistics	, Springer-Verlag, New York, 2002.	
5.	Matloff, N., From Algorithms to Z-Scores: Probabi	listic and Statistical Modelling in Compu	iter Science,
	Orange Grove Texts Plus, Gainesville, FL, 2009.		
6.	Gentle, J. E., Hardle, W., Mori, Y., Handbook of Co	mputational Statistics, Springer, Heidel	berg, 2004.
8.2 Sen	ninar /Laboratory	Teaching methods	Remarks
1.	Random variables and applications.	Interactive exposure	The seminar is
		Explanation	structured as 2
		Conversation	hours per week,
			every other
			week
2.	Computer simulations of discrete random	Interactive exposure	
	variables. Discrete methods.	Explanation	
		Conversation	
		 Individual and group work 	
3.	Computer simulations of random variables and	Interactive exposure	
	Monte Carlo studies. Inverse transform method,	Conversation	
	rejection method, special methods.	Synthesis	
		Individual and group work	
4.	Markov chains. Applications and simulations.	Interactive exposure	

	 Explanation Conversation Individual and group work
 Counting processes. Bernoulli and Poisson counting processes. Applications and simulations. 	 Interactive exposure Explanation Conversation Individual and group work
6. Queuing systems. Examples and simulations.	 Interactive exposure Explanation Conversation Individual and group work
 Statistical inference. Applications and simulations. Lab test. 	 Interactive exposure Explanation Conversation Description Individual and group work

Bibliography

- 1. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 2. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 3. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 4. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 5. Gentle, J. E., Elements of Computational Statistics, Springer-Verlag, New York, 2002.
- 6. Matloff, N., From Algorithms to Z-Scores: Probabilistic and Statistical Modelling in Computer Science, Orange Grove Texts Plus, Gainesville, FL, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course gives students solid statistical background for computational intelligence.
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research.
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles in Computational Statistics, with emphasis on simulations and Monte Carlo studies; be able to apply correctly the course concepts on various applications and problem solving 	Written exam	70%
10.5 Seminar/Lab activities	 be able to apply course concepts and techniques on practical problems be able to implement course concepts and algorithms in Matlab 	 participation in discussing, solving and implementing problems throughout the semester individual presentation of solutions 	30%

	 be able to solve numerical statistical problems in Matlab 	 - lab test (numerical statistical applications and simulations) 					
10.7 Minimum performance standards							
10.7 Minimum performance	standards						

A grade of 5 or above (on a scale from 1 to 10) on <u>each</u> activity mentioned above (written test, seminar/lab evaluation)

11. Labels ODD (Sustainable Development Goals)¹

General label for Sustainable Development							
							9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

Date	Signature of course coordinator	Signature of seminar coordinator
30.04.2025	Prof. Sanda Micula, PhD. Habil.	Prof. Sanda Micula, PhD. Habil.

Date of approval

Signature of the head of department

Prof. dr. Andrei Mărcuş

¹ Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.