

SYLLABUS

Computational Thinking

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution Babeş-Bolyai University of Cluj-Napoca

1.2. Faculty Faculty of Mathematics and Computer Science

1.3. Department Department of Computer Science

1.4. Field of study Computer Science

1.5. Study cycle Master

1.6. Study programme/Qualification Data Science

1.7. Form of education Full-time

2. Information regarding the discipline

2.1. Name of the discipline Computational Thinking Discipline code MME8181

2.2. Course coordinator Conf. Dr. Camelia Șerban

2.3. Seminar coordinator Conf. Dr. Camelia Șerban

2.4. Year of study 1 2.5 Semester 1 2.6. Type of evaluation E 2.7 Type of discipline Compulsory

3. Total estimated time (hours/semester of didactic activities)

4. Prerequisites (if necessary)

4.1. curriculum -

4.2. competencies -

5. Conditions (if necessary)

5.1. for the course Video projector

5.2. for the seminar /lab activities Computers, specific development environment

6.1. Specific competencies acquired 1

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

3.1 Hours per week 4 Of which: 3.2 course 2 3.3 seminar/laboratory 1

3.4 Total hours in the curriculum 42 Of which: 3.5 course 28 3.6 seminar/laboratory 28

Time allotment for individual study (ID) and self-study activities (SA) hours

Learning using manual, course support, bibliography, course notes (SA) 35

Additional documentation (in libraries, on electronic platforms, field documentation) 32

Preparation for seminars/labs, homework, papers, portfolios and essays 54

Tutorship 4

Evaluations 8

Other activities: -

3.7. Total individual study hours 133

3.8. Total hours per semester 175

3.9. Number of ECTS credits 7

P
ro

fe
ss

io
n

al
/e

ss
e

n
ti

al

co
m

p
et

e
n

ci
e

s

• C1.1 Description of programming paradigms and of language specific mechanisms, as well as identification

of syntactic and semantic differences.

• C1.3 Elaboration of adequate source code and testing of components in a given programming language,

based on given specifications.

• C1.4 Testing applications based on testing plans.

• C1.5 Developing units of programs and corresponding documentation.

Tr
an

sv
e

rs
al

co
m

p
et

e
n

ci
e

s

• CT1 Application of efficient and rigorous working rules, manifest responsible attitudes towards the

scientific and didactic fields, respecting professional and ethical principles.

• CT2 Use of efficient methods and techniques for learning, information, research and development of
abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication
in a widely used foreign language.

6.2. Learning outcomes

K
n

o
w

le
d

ge
 The student has the necessary knowledge for using computers, developing software programs and applications,

information processing.

The student has knowledge related to programming, mathematics, engineering and technology and has the skills to
use them to create complex information technology systems.

Sk
ill

s

The student has the ability to develop, design and create new applications, systems or products using best practices
of the field.
The student has the necessary skills for computer program design and software systems analysis.
The student has the ability to apply general rules to specific problems and produce relevant solutions.
The student has the necessary skills to understand and use object-oriented programming concepts to develop
software applications of medium complexity.

R
e

sp
o

n
si

b
ili

ty

an
d

 a
u

to
n

o
m

y:

The student is able to identify complex problems and examine related issues to develop solving options and
implement solutions.
The student has the ability to choose and use programming paradigms (procedural, object-oriented, functional) to
develop software applications appropriate for the specific domain of the application being developed.

7. 7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. Introduction to Computational Thinking: • Interactive exposure

• Live coding

• Explanation

• Practical examples

2. Functions

3. Testing.

4. Compound types: list, tuple, dictionary

7.1 General objective of the
discipline

To develop the foundations of Computational Thinking, concepts, methods and
techniques

7.2 Specific objective of the
discipline

To understand how Computational Thinking can be used by data scientists in order
to organize structured and unstructured data for addressing business problems.

5. Searching & Sorting • Case-study
discussions 6. Modular programming

7. User defined types

8. Lambda functions

9. Introduction to Data Science in
Python: Pandas data-frames; Matplotlib plotting

10-11 Statistical Thinking in Python

 12-14 Intermediate Python for Data Science

Bibliography
1. Kleinberg and Tardos – Algorithm Design. Pearson Educational, 2014
2. (http://www.cs.princeton.edu/~wayne/kleinberg-tardos/)
3. The Python language reference. (https://docs.python.org/3/reference/index.html)
4. The Python standard library. (https://docs.python.org/3/library/index.html)
5. The Python tutorial. (https://docs.python.org/3/tutorial/index.html)
6. Kent Beck - Test Driven Development: By Example. Addison-Wesley Longman, 2002.

8.2 Seminar / laboratory Teaching methods Remarks

1. Simple Applications • Interactive exposure

• Explanation

• Conversation

• Didactical
demonstration

2. Simple Applications

3. Simple Applications

4. Modular Programming. User defined types

5. Lambda

6. Introduction to Python libraries for Data Science

7. Statistical Thinking

Bibliography
1. Kleinberg and Tardos – Algorithm Design. Pearson Educational, 2014
2. (http://www.cs.princeton.edu/~wayne/kleinberg-tardos/)
3. The Python language reference. (https://docs.python.org/3/reference/index.html)
4. The Python standard library. (https://docs.python.org/3/library/index.html)
5. The Python tutorial. (https://docs.python.org/3/tutorial/index.html)
6. Kent Beck - Test Driven Development: By Example. Addison-Wesley Longman, 2002.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
The course exists in the studying program of all major universities in Romania and abroad.
The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the
grade (%)

10.4 Course Know concepts and
methods from the domain
of Computationl Thinking

Project development for a
specific domain

50%

10.5 Seminar/lab activities Apply the concepts and
methods learnt for solving
problems to a from a
specific domain

Project verification and
presentation

50%

10.6 Minimum performance standards – minim 5 grade

11. Labels ODD (Sustainable Development Goals)2

Not applicable.

Date:
15.04.2025

Signature of course coordinator

Conf. Dr. Camelia Șerban

Signature of seminar coordinator

Conf. Dr. Camelia Șerban

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the

discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no

label describes the discipline, delete them all and write „Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

