SYLLABUS

Cloud Application and Infrastructure Security

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University	
1.2. Faculty	Faculty of Mathematics and Computer Science	
1.3. Department	Department of Computer Science	
1.4. Field of study	Computer Science	
1.5. Study cycle	Master	
1.6. Study programme/Qualification	/Qualification Cyber Security	
1.7. Form of education	Full time	

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne	Cloud Application and Infrastructure Security				ty Discipline code	MME8202
2.2. Course coordinator C.d.asoc. Ing. Andrei Petru Ștefănie								
2.3. Seminar coordinator C.d.asoc. Ing. Andrei Petru Ștefănie								
2.4. Year of study	2	2.5.	Semester	3	2.6. Type of evaluation	С	2.7. Discipline regime	Mandatory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 laboratory/project	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support,	bibliogra	aphy, course notes (SA)			20
Additional documentation (in libraries, on electronic platforms, field documentation) 30					30
Preparation for seminars/labs, homework, papers, portfolios and essays 30					30
Tutorship 6					6
Evaluations 8					8
3.7. Total individual study hours 94					
3.8. Total hours per semester	150				
3.9. Number of ECTS credits	6				

4. Prerequisites (if necessary)

4.1. curriculum	Computer network, databases, web applications, encryption
4.2. competencies	Good programming skills in at least one programming language (Java, JavaScript, C#, etc.)

5. Conditions (if necessary)

5.1. for the course	Projector and internet access
5.2. for the seminar /lab activities	Projector and internet access

6.1. Specific competencies acquired

Professional/essential competencies	 Know and understand the main paradigms related to data protection: confidentiality, integrity and data availability; Ability to create distributed applications in the Cloud, respecting the ethical and secure policies;
Transversal competencies	 Professional communication skills; concise and precise description, both oral and written, of professional results. Entrepreneurial skills; working with economical knowledge; continuous learning;

6.2. Learning outcomes

Knowledge	 The student / graduate knows the architecture of cloud applications and the security models used in such applications; The student / graduate knows the basic mechanisms that define the security of the system and the software environment in which an application runs, such as: access permissions, security policies, interaction with the external environment;
Skills	 The student / graduate is able to use security techniques in the software systems development process; The student/graduate is able to provide specialized advice and develop specialized materials; The student / graduate is able to assess the security risk using at least one of the established methods;
Responsibility and autonomy:	 The student/graduate assumes responsibility for the product of his / her work, requests feedback and uses it constructively; The student/graduate demonstrates teamwork capabilities and develops communication skills;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To provide students with a comprehensive understanding of the security principles, risks, and controls associated with cloud computing. To develop the ability to design, deploy, and secure cloud applications and infrastructures across different service models (IaaS, PaaS, SaaS). To build an awareness of shared-responsibility models and how they influence security design and incident response in the cloud. To promote a critical perspective on how cloud adoption affects compliance, governance, and threat exposure.
---	--

7.2 Specific objective of the discipline

- Gain practical experience in securing workloads on major public cloud platforms (e.g., AWS, Azure, GCP).
- Understand and apply key cloud-security services such as identity and access management, encryption, monitoring, and vulnerability management.
- Analyze real-world security incidents and misconfigurations to derive best practices for prevention and remediation.
- Evaluate cloud compliance frameworks (CIS Benchmarks, NIST 800-53, ISO 27017, etc.) and model them using cloud-native policies and controls.
- Integrate security into the full lifecycle of cloud-native applications using automation and managed services.

8. Content

8.1 Course	Teaching methods	Remarks
 Introduction to Cloud Security Cloud computing models (IaaS, PaaS, SaaS) Shared Responsibility Model Cloud threat landscape and common attack vectors Benefits and risks of cloud adoption Overview of compliance frameworks (CIS, NIST, ISO 27017, FedRAMP) 	Exposure: description, explanation, examples, debate	
Cloud Security Architecture Cloud-native security principles Defense-in-depth and Zero Trust Security responsibilities across layers (application, network, data, identity) Secure design patterns in cloud applications	Exposure: description, explanation, examples, debate	
3. Identity and Access Management (IAM) Part I • Principles of authentication and authorization • Users, roles, and policies • Federation and SSO • IAM in AWS, Azure, and GCP	Exposure: description, explanation, examples, debate	
4. Identity and Access Management (IAM) Part II • Privilege management and least privilege • Role chaining and cross-account access • Common IAM misconfigurations and attack paths • Detection and remediation of IAM risks	Exposure: description, explanation, examples, debate	
 5. Cloud Networking and Perimeter Security Part I Virtual networks, subnets, routing tables Security groups and network ACLs Ingress/egress control Private vs. public connectivity 	Exposure: description, explanation, examples, debate	
6. Cloud Networking and Perimeter Security Part I Hybrid connectivity (VPNs, Direct Connect, ExpressRoute) Network segmentation Zero Trust networking Network monitoring and reachability analysis	Exposure: description, explanation, examples, debate	

 7. Data Security - Protection and Encryption Data classification and lifecycle Encryption at rest and in transit Key management systems (AWS KMS, Azure Key Vault, GCP KMS) Secrets management and token-based access 	Exposure: description, explanation, examples, debate
8. Data Security - Backup and Recovery • Backup and snapshot strategies • Continuous backups vs. point-in-time recovery • Disaster recovery (RPO/RTO concepts) • Immutability and WORM storage	Exposure: description, explanation, examples, debate
 9. Governance and Multi-Account Management Part I • Multi-account structure and best practices • Service Control Policies (SCPs) • Centralized billing and audit • Organizational security posture management 	Exposure: description, explanation, examples, debate
10. Governance and Multi-Account Management Part II • Azure Management Groups and Blueprints • GCP Folders and Organization Policies • Cross-cloud policy enforcement • Managing compliance at scale	Exposure: description, explanation, examples, debate
 11. Monitoring and Logging Part I Importance of observability for security Cloud-native logging services (CloudTrail, CloudWatch, Azure Monitor, GCP Cloud Logging) Centralized log storage and retention Detecting anomalies in logs 	Exposure: description, explanation, examples, debate
 12. Monitoring and Logging Part II Integration with SIEM/SOAR tools Correlation of logs and alerts Case studies of incident investigation Continuous compliance monitoring 	Exposure: description, explanation, examples, debate
 13. Cloud Security Tools and Platforms Overview of CNAPP, CSPM, CWPP, CIEM, KSPM Agent-based vs. agentless approaches Benchmarking and compliance automation (CIS, STIG) Runtime protection and emerging trends 	Exposure: description, explanation, examples, debate
 14. Recap and Final Evaluation Review of key topics Integrative discussions Final evaluation and student presentations 	Exposure: description, explanation, examples, debate

Bibliography

- 1. Chris Dotson Practical Cloud Native Security, O'Reilly Media, 2nd edition, 2023
- 2. Ross Anderson Security Engineering: A Guide to Building Dependable Distributed Systems, Wiley, 3rd edition, 2020
- 3. Yuri Diogenes, Nicholas DiCola, Jonathan Trull Azure Security Handbook: A Comprehensive Guide for Defending Your Enterprise Environment, Microsoft Press, 1st edition, 2021
- 4. Center for Internet Security (CIS) CIS Benchmarks for AWS, Azure, and GCP, latest online edition
- 5. NIST Special Publication 800-144 Guidelines on Security and Privacy in Public Cloud Computing, U.S. Department of Commerce, 2011

8.2 Seminar / laboratory	Teaching methods	Remarks
--------------------------	------------------	---------

1. Introduction to Cloud Security Foundations		
Overview of the AWS Academy platform and course structure		
Access and navigation of the AWS Academy Learner		
Lab environment	Demonstration, guided setup, Q&A	
Review of shared responsibility model and AWS	1, 6	
global infrastructure • Introduction to lab submission and evaluation		
process		
2. Using Resource-Based Policies to Secure an S3 Bucket		
• Create and configure S3 buckets with different access		
policies • Use bucket policies and IAM policies to manage	Demonstration, guided setup, Q&A	
access		
Implement least-privilege principles		
3. Securing VPC Resources by Using Security Groups		
Configure a VPC with public and private subnetsCreate and apply security groups to control		
inbound/outbound traffic	Demonstration, guided setup, Q&A	
Test connectivity scenarios and verify network		
isolationReview best practices for network segmentation		
4. Encrypting Data at Rest by Using AWS KMS• Create and manage encryption keys in AWS KMS		
• Encrypt and decrypt S3 objects and EBS volumes	Demonstration, guided setup, Q&A	
Understand key rotation and policy management		
5. Monitoring and Alerting with CloudTrail		
and CloudWatch		
Enable and configure AWS CloudTrail for account activity monitoring	D	
Set up CloudWatch Alarms and Logs	Demonstration, guided setup, Q&A	
Create metric filters for detecting security-relevant		
events		
6. Remediating an Incident by Using AWS		
Config and LambdaUse AWS Config to detect non-compliant resources		
Develop a Lambda function for automated	Demonstration, guided setup, Q&A	
remediation	2 cmonstration, garden setup, Quit	
Simulate a compliance drift and observe automatic correction		
7. Final Evaluation and Recap	Demonstration, guided setup, Q&A	

Bibliography

- 1. AWS Academy Cloud Security Foundations Learner Lab Manual, AWS Academy, latest edition
- 2. AWS Documentation Identity and Access Management (IAM), Amazon S3 Security, AWS KMS, AWS Config, CloudTrail, CloudWatch, available at https://docs.aws.amazon.com/
- 3. Center for Internet Security (CIS) CIS Amazon Web Services Foundations Benchmark, latest online edition

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The discipline aligns with current trends in academic curricula on Cloud Security and Secure Cloud Architecture, as offered by leading universities in Europe and worldwide.
- The course content is consistent with international frameworks and guidelines promoted by professional and standardization bodies such as NIST, ENISA, and the Center for Internet Security (CIS).
- The practical component, delivered through the AWS Academy Cloud Security Foundations program, ensures alignment with industry-recognized best practices and certifications (e.g., AWS Certified Security Specialty, Azure Security Engineer Associate).
- Software organizations recognize the importance of the concepts discussed during this course.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade	
10.4 Course	Individual research and	Colloquium	70%	
	presentation on a topic			
	related to what has been			
	taught at the course.			
10.5 Seminar/laboratory	Being able to implement	Test	30%	
	course concepts and			
	presented technologies			
40 CM: 1 1 1 C C				

10.6 Minimum standard of performance

At least grade 5 (from a scale of 1 to 10) at both presentation and laboratory project.

11. Labels ODD (Sustainable Development Goals)¹

Not applicable.

Date:

15.04.2025	C.d.asoc. Ing. Andrei Petru Ștefănie	C.d.asoc. Ing. Andrei Petru Ștefănie
Date of approval:		Signature of the head of department
		Assoc.prof.phd. Adrian STERCA

Signature of seminar coordinator

Signature of course coordinator