SYLLABUS

Quantum Cryptography

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Cyber Security
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Quantum	Quantum Cryptography					Discipline code	MME8207
2.2. Course coordinator				Le	ector U	niv. dr. Mi	hoc Tudor Dan		
2.3. Seminar coordinator				Le	ctor U	niv. dr. Mi	hoc Tudor Dan		
2.4. Year of study	1	2.5. Semester	Semester 2 2.6. Type of evaluati			Е	2.7. Disc	cipline regime	Optional

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/ laboratory/project	1/0/1
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/ laboratory/project	14/0/14
Time allotment for individual study (ID) and self-study activities (SA) hours					
Learning using manual, course support, bibliography, course notes (SA)					30
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					41
Tutorship					
Evaluations					
Other activities:					0
3.7. Total individual study hours 119					
3.8. Total hours per semester 175					
3.9. Number of ECTS credits 7					

4. Prerequisites (if necessary)

4.1. curriculum	Basic knowledge of calculus and linear algebra.
4.2. competencies	Basic programming skills in Python.

5. Conditions (if necessary)

5.1. for the course	Projector.
5.2. for the seminar /lab activities	Laboratory with computers. Software: Anaconda, Python, Oiskit.

6.1. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/ essential competencies	 Knowledge of all security aspects that can impact the processes and IT&C assets of an organization; Proficient use of verification, validation, and evaluation criteria and methods in order to ensure software security; Demonstrate advanced skills to analysis, design, and construction of secure software systems, using a wide range of hardware / software platforms, programming languages and environments, and modeling, verification and validation tools;
Transversal competencies	 Professional communication skills; concise and precise description, both oral and written, of professional results; Ethic and fair behaviour, commitment to professional deontology;

6.2. Learning outcomes

	• The student / graduate knows which are the best security mechanisms that can be implemented
	on the Internet
	• The student / graduate knows the most commonly used mathematical cryptographic algorithms
Knowledge	as well as the most important protocols in the TCP / IP stack that implement these algorithms
	• The student / graduate has knowledge about Internet applied cryptography, especially
	knowledge related to the public and private key cryptography
	• The student / graduate is able to develop secure software systems
	• The student / graduate is able to identify possible security issues in software systems
SKIIIS	• The student / graduate is able to understand the classical static analysis techniques used to
	analyze and verify the security of programs
	• The student / graduate has the ability to evaluate the security features of software applications at
	the source code level
D 11.11.	• The student / graduate acquires the minimum basic skills needed to write a clean source code
Responsibility	without vulnerabilities
and autonomy:	• The student / graduate knows the basic mechanisms that define the security of the system and
	the software environment in which an application runs, such as: access permissions, security
	policies, interaction with the external environment

7. Objectives of the discipline (outcome of the acquired competencies)

	· To present mathematical techniques employed in communication and cryptography
7.1 General objective of the	from a quantum standpoint.
	\cdot To acquaint the students with cutting-edge quantum communication systems.
uiscipine	\cdot To familiarize the students with novel cryptographic techniques that are resilient to
	quantum assaults.
	\cdot Gain a solid understanding of the key principles of quantum mechanics relevant to
	cryptography
	\cdot Explore the theory and practical implementation of Quantum Key Distribution
	protocols.
	· Study and analyze various quantum cryptographic protocols.
7.2 Specific chiesting of the	\cdot Investigate classical cryptographic algorithms designed to resist attacks from
7.2 Specific objective of the	quantum computers
uiscipine	· Explore potential quantum attacks on classical cryptographic systems.
	· Gain hands-on experience in implementing quantum cryptographic protocols using
	simulators and/or quantum computing frameworks (e.g., Qiskit or Quipper).
	· Investigate real-world applications of quantum cryptography.
	\cdot Analyze the limitations, challenges, and open research questions in quantum
	cryptography.

8. Content

8.1 Course	Teaching methods	Remarks
1. Mathematics and physics prerequisites		
2. Classic Communication and Cryptography		
3. Quantum communications - advantages, infrastructure, and protocols		
4. Quantum Key distribution		
5. Introduction to quantum computing		
6. Geometrical representations of Qubits and Gates	Exposition;	
7. Quantum Algorithms	Dialogue;	
8. Factorization - Shor's Algorithm	Discussion.	
9. Effects of Shor's Algorithm to classical cryptography		
10. Grover's algorithm and its effects		
11. Post-quantum cryptography		
12. Ethical issues in the quantum communication and quantum computing era.		

Bibliography

1. Bellare, Mihir, and Shafi Goldwasser. "Lecture notes on cryptography." (2008).

2. Gisin, Nicolas, et al. "Quantum cryptography." Reviews of modern physics 74.1 (2002): 145.

3. Yan, Song Yuan. "Cryptanalytic attacks on RSA." (2007).

4. Bruß, Dagmar, and Norbert Lütkenhaus. "Quantum key distribution: from principles to practicalities." Applicable Algebra in Engineering, Communication and Computing 10.4 (2000): 383-399.

5. Shor, Peter W. "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer." SIAM review 41.2 (1999): 303-332.

6. Stancil, Daniel D., and Gregory T. Byrd. "Principles of superconducting quantum computers". John Wiley & Sons, 2022.7. Imre, Sandor, and Ferenc Balazs. "Quantum Computing and Communications: an engineering approach". John Wiley & Sons, 2005.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Unitary and Hermitian matrices. Quantum		
transformations and their representations		
2. Simulation of the BB84 protocol using		
quantum communication simulators		
3. Experimenting with quantum error		
correction		
techniques to detect and mitigate transmission	Exposition,	
errors.	Problem solving,	
4. Implement some simple quantum	Critical thinking	
algorithms	-	
5. Implement the quantum estimation of phase		
algorithm		
6. Implement Shor's algorithm		
7. Analyse prost quantum algorithms and the		
conditions on which they are quantum		
resistent		

Bibliography

1. Bellare, Mihir, and Shafi Goldwasser. "Lecture notes on cryptography." (2008).

2. Gisin, Nicolas, et al. "Quantum cryptography." Reviews of modern physics 74.1 (2002): 145.

3. Yan, Song Yuan. "Cryptanalytic attacks on RSA." (2007).

4. Bruß, Dagmar, and Norbert Lütkenhaus. "Quantum key distribution: from principles to practicalities." Applicable Algebra in Engineering, Communication and Computing 10.4 (2000): 383-399.

5. Shor, Peter W. "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer." SIAM review 41.2 (1999): 303-332.

6. Stancil, Daniel D., and Gregory T. Byrd. "Principles of superconducting quantum computers". John Wiley & Sons, 2022.7. Imre, Sandor, and Ferenc Balazs. "Quantum Computing and Communications: an engineering approach". John Wiley & Sons, 2005.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The contents are directed towards practical applications in classic communications and cryptography and to the transition towards quantum communications. The topic is present in the computer science study programs of the major universities.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade		
10.4 Course	Use of basic concepts in programs and examples	Written Exam	60%		
10.5 Seminar/laboratory	Implement course concepts and algorithms	Evaluation of students' projects	40%		
10.6 Minimum standard of performance					
• At least grade 5 (from a scale of 1 to 10) for both evaluation types.					

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date:

...

....

Signature of course coordinator	Signature of seminar coordinator
Lecturer PhD. Tudor Dan Mihoc	Lecturer PhD. Tudor Dan Mihoc

Date of approval:

Signature of the head of department

Assoc. Prof. PhD. Adrian STERCA

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.