SYLLABUS

Peer-to-Peer Systems and Blockchain - Blockchain Security

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babes-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Computer Science
1.7. Form of education	Artificial Intelligence for Connected Industries

2. Information regarding the discipline

2.1. Name of the dis	scipli		Peer-to-Peer Systems and Blockchain - Blockchain Security					MME8234
2.2. Course coordinator Assoc. Prof. I					Prof. Eng. Florin Crac	iun		
2.3. Seminar coordinator Assoc. F				Prof. Eng. Florin Crac	iun			
2.4. Year of study	1	2.5. Semester	2	2.6. Type of evaluation	n	Е	2.7. Discipline regime	Optional

3. Total estimated time (hours/semester of didactic activities)

of rour commuted time (nours) semester of anadere delivities)					
3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bibliography, course notes (SA)				35	
Additional documentation (in libraries, on electronic platforms, field documentation)				25	
Preparation for seminars/labs, homework, papers, portfolios and essays				45	
Tutorship					5
Evaluations					9
Other activities:					
3.7. Total individual study hours 119					
3.8. Total hours per semester 175					
3.9. Number of ECTS credits 7					

4. Prerequisites (if necessary)

	Fundamentals of Programming, Algorithms and Data Structures,					
4.1. curriculum	Object-Oriented Programming, Advanced Programming Methods, Logic and					
	Functional Programming					
4.2. competencies	Basic knowledge in Python, Java, C#, C++					

5. Conditions (if necessary)

5.1. for the course	projector
5.2. for the seminar /lab activities	projector

6.1. Specific competencies acquired 1

- advanced programming skills in high-level programming languages
- development and maintenance of software systems

Transversal competencies

- application of organized and efficient work rules, of responsible attitudes towards the didacticscientific field, to bring creative value to own potential, with respect for professional ethics principles and norms
- efficient development of organized activities in an interdisciplinary group and the development of empathetic abilities for interpersonal communications, to relate to and cooperate with various groups

6.2. Learning outcomes

Knowledge

The student knows:

- The graduate has knowledge related to programming, mathematics, engineering and technology and has the skills to use them to create complex information technology systems.
- The graduate has the necessary knowledge to process and verify data and information.
- The graduate has the necessary knowledge related to software life cycle stages and software process models.
- The graduate is familiar with the concepts related to software modelling and is able to implement functional and non-functional requirements described in specific documents for the analysis and design of software systems.
- The graduate has the knowledge to apply model-based software development techniques.

Skills

The student is able to

- The graduate has the necessary skills to understand and use object-oriented programming concepts to develop software applications of medium complexity.
- The graduate has the ability to understand and use design patterns for application development.

Responsibility and autonomy:

The student has the ability to work independently to obtain

- The graduate has the ability to evaluate different architectures and possible solutions to a problem and choose the right one for the specific requirements and constraints of the application to be developed.
- The graduate has the ability to choose and use programming paradigms (procedural, object-oriented, functional) to develop software applications appropriate for the specific domain of the application being developed.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline

• Understanding of the main concepts and techniques of blockchain technology, with main focus on smart contracts

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

	To understand the execution model of Ethereum platform
	To understand bitcoin concepts
7.2 Specific objective of the discipline	To understand the execution of smart contracts
	 To learn how to wite smart contracts To become familiar with the tools which automatically analise, optimize and verify smart contract

8. Content

8.1 Course	Teaching methods	Remarks
Introduction into Blockchain foundations and applications	Interactive exposureExplanationConversationDidactical demonstration	
2. Basics of Ethereum	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. Introduction in Smart contracts	 Interactive exposure Explanation Conversation Didactical demonstration 	
4. Smart contracts. Design patterns in Solidity	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Advanced topics on Solidity	 Interactive exposure Explanation Conversation Didactical demonstration 	
6. Decentralized Applications	 Interactive exposure Explanation Conversation Didactical demonstration 	
7. Bitcoins. Foundations	Interactive exposure	

	Explanation
	Conversation
	Didactical
	demonstration
8. Bitcoins. Advanced topics	Interactive
o. bitcoms. Advanced topics	exposure
	• Explanation
	Conversation
	Didactical
	demonstration
9. Consensus protocols. Foundations	Interactive
	exposure
	• Explanation
	• Conversation
	Didactical
	demonstration
10. Consensus protocols. Advanced	Interactive
topics	exposure
	Explanation
	Conversation
	Didactical
	demonstration
11. Security in Ethereum	Interactive
-	exposure
	Explanation
	• Conversation
	Didactical
	demonstration
12. Mining strategies, Mining attacks	Interactive
12.1 mmg otratogroo, 1 mmg attaone	exposure
	• Explanation
	Conversation
	Didactical
	demonstration
12 Advanced tenies on Pleakehoin	
13. Advanced topics on Blockchain	• Interactive
verification	exposure Conversation
14 The future of Dischales	
14. The future of Blockchain	Interactive
	exposure
	Conversation
Du li	
Bibliography	

Bibliography

- 1. (Main textbook-free available)Narayanan, Bonneau, Felten, Miller and Goldfeder, <u>Bitcoin</u> and <u>Cryptocurrency Technologies: A Comprehensive Introduction</u>
- 2. Bonneau, Miller, Clark, Narayanan, Kroll and Felten , Research Perspectives and Challenges for Bitcoin and Cryptocurrencies

- 3. Jeremy Clark, an extensive online bibliography of Bitcoin research papers
- 4. <u>Bitcoin Developer Reference</u>
- 5. Satoshi Nakamoto, <u>Bitcoin: A Peer-to-Peer Electronic Cash System</u>
- 6. Ethereum extensive wiki
- 7. <u>Bitcoin Wiki</u>
- 8. A.M. Antonopoulos, G. Wood , Mastering Ethereum: Building Smart Contracts and DApps O'Reilly Media, 2018
- 9. A.M. Antonopoulos, Mastering Bitcoin, O'Reilly Media, 2017
- 10. A. Bahga, V. Madisetti , Blockchain Applications: A Hands-On Approach, VPT Publishing House, 2017
- 11. Solidity: https://solidity.readthedocs.io/en/v0.5.10/

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Configuration of Ethereum client	Conversation, debate, case studies, examples	The laboratory is structured as 2 hours classes every second week
2. Tools:Ganache, Remix, Mycrypto		
3. Solidity		
4. Project assignment		
5. Metatask and Design Patterns		
6. Decentralized Applications		
7. Project evaluation		

Bibliography

- 1. Jeremy Clark, an extensive online bibliography of Bitcoin research papers
- 2. Bitcoin Developer Reference
- 3. Satoshi Nakamoto, <u>Bitcoin: A Peer-to-Peer Electronic Cash System</u>
- 4. Ethereum extensive wiki
- 5. Bitcoin Wiki
- 6. A.M. Antonopoulos, G. Wood, Mastering Ethereum: Building Smart Contracts and DApps O'Reilly Media, 2018
- 7. A.M. Antonopoulos, Mastering Bitcoin, O'Reilly Media, 2017
- 8. A. Bahga, V. Madisetti , Blockchain Applications: A Hands-On Approach, VPT Publishing House, 2017
- 9. Solidity: https://solidity.readthedocs.io/en/v0.5.10/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies
- The content of the course is considered by the software companies as important for average software development skills

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	 know the basic principle of the domain; apply the course concepts in problem solving 	Written Final Exam	50%
10.5 Seminar/laboratory	be able to use course concepts in solving the real problems	Lab work	50%

10.6 Minimum standard of performance

• At least grade 5 (from a scale of 1 to 10) at written final exam and at each laboratory assignment.

11. Labels ODD (Sustainable Development Goals)²

Not	ann	lica	hla
/V/1/	am	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MP

_

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.

Date:	Signature of course coordinator	Signature of seminar coordinator
	Assoc. Prof. Eng. Florin Craciun	Assoc. Prof. Eng. Florin Craciun
Date of approval:		Signature of the head of department
		Assoc.prof.phd. Adrian STERCA