SYLLABUS

Algorithms, models and concepts in distributed systems

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babes-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Databases
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Algorithm systems	Algorithms, models and concepts in systems			istribu	Discipline code	MME8110
2.2. Course coordinator			As	soc. pr	rof. Rareş Florin Boian, P	h.D.		
2.3. Seminar coordinator				As	soc. pr	of. Rareș Florin Boian, P	h.D.	
2.4. Year of study	1	2.5. Semester	2	2.6. Type of evaluation	on	Е	2.7. Discipline regime	Optional

3. Total estimated time (hours/semester of didactic activities)

				•	
3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	2
3.4. Total hours in the curriculum	48	of which: 3.5 course	24	3.6 seminar/laboratory/project	24
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bibliography, course notes (SA)				20	
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					10
Evaluations					9
Other activities:					
3.7. Total individual study hours 79					
3.8. Total hours per semester	175				
3.9. Number of ECTS credits				7	

4. Prerequisites (if necessary)

Tri rerequisites (ii	necessary
4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab activities	

6.1. Specific competencies acquired ¹

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

use of theoretical foundations of computer science as well as of formal models design and administration of computer networks application of organized and efficient work rules, of responsible attitudes towards the didactic-scientific field, to bring creative value to own potential, with respect for professional ethics principles and norms use of efficient methods and techniques to learn, inform, research and develop the abilities to bring value to knowledge, to adapt at the requirements of a dynamical society and to communicate efficiently in Romanian language and in an international language

6.2. Learning outcomes

Knowledge	 The graduate has the necessary knowledge for using computers, developing software programs and applications, information processing. The graduate has the necessary knowledge for literature review.
Skills	 The graduate has the ability to develop, design and create new applications, systems or products using best practices of the field. The graduate has the necessary skills for computer program design and software systems analysis. The graduate has the necessary skills to use research support tools.
Responsibility and autonomy:	 The graduate is able to identify complex problems and examine related issues to develop solving options and implement solutions. The graduate is able to combine diverse information to formulate solutions and generate ideas for developing new products and applications. The graduate is able to apply architectural styles, design patterns and best practices in the field to design software applications of high complexity. The graduate has the ability to evaluate different architectures and possible solutions to a problem and choose the right one for the specific requirements and constraints of the application to be developed.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Learning basic distributed systems and distributed algorithms concepts Learn to implement distributed algorithms
	 Abstractions used in modelling the distributed algorithms
7.2 Specific objective of the	 Distributed systems theoretical models
discipline	 Broadcast algorithms
discipline	 Shared memory algorithms
	 Consensus algorithms

8. Content

8.1 Course	Teaching methods	Remarks
------------	------------------	---------

Weeks 1-2: Distributed systems models and abstractions	 Interactive exposure Explanation Conversation Didactical demonstration
Weeks 3-4: Basic and reliable broadcast algorithms	 Interactive exposure Explanation Conversation Didactical demonstration
Weeks 5-6: Uniform and probabilistic broadcast algorithms	 Interactive exposure Explanation Conversation Didactical demonstration
Weeks 7-8: Shared memory – regular registers	 Interactive exposure Explanation Conversation Didactical demonstration
Weeks 9-10: Shared memory – atomic registers	 Interactive exposure Explanation Conversation Didactical demonstration
Weeks 11-12: Consensus - flooding	 Interactive exposure Explanation Conversation Didactical demonstration

Bibliography

- 1. CHRISTIAN CACHIN, RACHID GUERRAOUI, LUIS RODRIGUES, Introduction to Reliable and Secure Distributed Programming, Second Edition, Springer, 2011
- 2. LYNCH N.A. Distributed Algorithms. Morgan Kaufmann Pub. 1996
- 3. Ajay D. Kshemkalyani, Mukesh Singhal, Distributed Computing: Principles, Algorithms, and Systems, Cambridge University Press, 2011
- 4. BOIAN F.M. Programarea distribuita in internet; metode si aplicatii. Ed. Albastra, Cluj, 1997
- 5. TANENBAUM A.S. Distributed Operating Systems. Prentice Hall, 2000
- 6. TEL G. Introduction to Distributed Algorithms. Cambridge Press, 1994

8.2 Seminar / laboratory	Teaching methods	Remarks
Distributed algorithm implementation architecture	 Interactive exposure Explanation Conversation Didactical demonstration 	
Detailed discussion about the implementation and testing of the broadcast algorithm	 Interactive exposure Explanation Conversation Didactical demonstration 	
Detailed discussion about the implementation and testing of the shared memory algorithm	 Interactive exposure Explanation Conversation Didactical demonstration 	
Detailed discussion about the implementation and testing of the consensus algorithm	 Interactive exposure Explanation Conversation Didactical demonstration 	

Bibliography

1. CHRISTIAN CACHIN, RACHID GUERRAOUI, LUIS RODRIGUES, Introduction to Reliable and Secure Distributed Programming, Second Edition, Springer, 2011

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- By learning the theoretical and methodological concepts and addressing the practical aspects of the Algorithms, models and concepts in distributed systems course, students acquire a body of knowledge consistent, consistent with partial competencies required for possible occupations provided in Grid 1 - RNCIS
- The course complies with IEEE and ACM Curriculla Recommendations for Computer Science studies.
- The course curriculum exists in universities and faculties in Romania
- The course content is very well appreciated by software companies whose employees and graduates of this course

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade	
10.4 Course	The level of knowledge and understanding of the course subjects	Written exam	30%	
	Ability to solve practical	Shared memory project	30%	
10.5 Seminar/laboratory	problems, specific to the course subjects	Consensus project	30%	
10.6 Minimum standard of performance				
,	course subjects performance	Consensus project	30%	

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date:	Signature of course coordinator	Signature of seminar coordinato
Date of approval:		Signature of the head of department
		Assoc.prof.phd. Adrian STERCA

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for Sustainable Development - if not applicable. If no label describes the discipline, delete them all and write "Not applicable.".