SYLLABUS

Statistical Computational Methods

University year 2025-2026

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Data Bases (Baze de date)
Qualification	
1.7. Form of education	Full-Time

2. Information regarding the discipline

2.1 Name of the d	isciplin	ne S	Statistical Computational			Discipline code	MME	8088
		ı	Methods					
2.2 Course coordinator				Prof. Sanda Micula, PhD. Habil.				
2.3 Seminar coordinator				Prof. Sanda Micula, PhD. Habil.				
2.4. Year of study	1 2.5	Semester	1	2.6. Type of evaluation	E	2.7 Type of discip	line	DF Optional

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1S + 1P
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bibliography, course notes (SA)					30
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					22
Tutorship					14
Evaluations					18
Other activities:					-

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Probability and Statistics
4.2. competencies	Logical thinking
	 Average logical programming skills

5. Conditions (if necessary)

5.1. for the course	•	Lecture room with large blackboard and video projector
5.2. for the seminar /lab	•	For seminar: Laboratory with computers having Matlab installed

6. Specific competencies acquired

Professional competencies	C4.3 Identifying the appropriate models and methods for solving real-life problems C4.4 Using simulations in order to study and elaborate models and evaluate their performance
Transversal competencies	CT1 Ability to conform to the requirements of organized and efficient work, to develop a responsible approach towards the academic and scientific fields, in order to make the most of one's own creative potential, while obeying the rules and principles of professional ethic CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquire basic knowledge of Probability Theory and Mathematical Statistics applications and models
7.2 Specific objective of the discipline	 Ability to use Monte Carlo methods and simulations for solving real-life problems and perform statistical analysis of data Become familiar and be able to work with various probabilistic and statistical models Ability to use statistical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
 Review of Probability and Statistics. Probability space. Rules of probability. Conditional probability. Probabilistic models. Random variables and random vectors. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Common discrete and continuous distributions. PDF and CDF. Examples, applications, properties. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Random samples. Sample functions. Estimators. Confidence intervals. Hypothesis and significance testing. 	Interactive exposureExplanationConversation	
 Computer simulations and Monte Carlo methods. MC methods and random number generators. Discrete methods. Examples. 	Interactive exposureExplanationConversationDescription	
 Inverse transform and discrete inverse transform method. Rejection method. Special methods. Examples. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Accuracy of an MC study. Estimating probabilities, means, variances. Size of an MC study. Other applications of MC methods. 	 Interactive exposure Explanation Conversation Didactical demonstration 	

7. Stochastic processes . Definitions, classifications.	Interactive exposure
Markov processes and Markov chains.	Explanation
Transition probability matrix. Properties,	Conversation
examples.	Description
8. Steady-state distribution. Regular Markov	Interactive exposure
chains. Periodic Markov chains. Simulation of	Explanation
Markov chains.	Conversation
	Didactical demonstration
9. Counting processes. Binomial and Poisson	Interactive exposure
counting processes. Gamma-Poisson formula.	Explanation
Simulation of counting processes. Examples.	Conversation
	Didactical demonstration
10. Queuing systems. Basic notions, main	Interactive exposure
components, Little's law. Bernoulli single-server	Explanation
QS. Systems with limited capacity.	Conversation
11. M/M/1 QS. Evaluation of a system's	Interactive exposure
performance. Examples.	Explanation
	Conversation
	Didactical demonstration
12. Multiserver QS's. Bernoulli k-server and M/M/k	Interactive exposure
QS's. M/M/∞ QS's. Simulation of QS's.	Explanation
	Conversation
13. Statistical inference. Nonparametric tests, Chi-	Interactive exposure
square-tests, Wilcoxon tests. Bootstrapping.	Explanation
Applications, examples, simulations.	Conversation
	Description
14. Regression and correlation. Fitting models.	Interactive exposure
Analysis of variance (ANOVA), prediction.	Explanation
Examples.	Conversation
	Didactical demonstration

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 3. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 4. Gentle, J. E., Elements of Computational Statistics, Springer-Verlag, New York, 2002.
- 5. Matloff, N., From Algorithms to Z-Scores: Probabilistic and Statistical Modelling in Computer Science, Orange Grove Texts Plus, Gainesville, FL, 2009.
- 6. Gentle, J. E., Hardle, W., Mori, Y., Handbook of Computational Statistics, Springer, Heidelberg, 2004.

8.2 Seminar /Laboratory	Teaching methods	Remarks
Random variables and applications.	Interactive exposureExplanationConversation	The seminar is structured as 2 hours per week, every other week
Computer simulations of discrete random variables. Discrete methods.	 Interactive exposure Explanation Conversation Individual and group work 	
 Computer simulations of random variables and Monte Carlo studies. Inverse transform method, rejection method, special methods. 	 Interactive exposure Conversation Synthesis Individual and group work 	
4. Markov chains. Applications and simulations.	 Interactive exposure 	

	ExplanationConversationIndividual and group work
 Counting processes. Bernoulli and Poisson counting processes. Applications and simulations. 	 Interactive exposure Explanation Conversation Individual and group work
6. Queuing systems. Examples and simulations.	 Interactive exposure Explanation Conversation Individual and group work
7. Statistical inference. Applications and simulations. Lab test.	 Interactive exposure Explanation Conversation Description Individual and group work

Bibliography

- 1. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 2. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 3. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 4. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 5. Gentle, J. E., Elements of Computational Statistics, Springer-Verlag, New York, 2002.
- 6. Matloff, N., From Algorithms to Z-Scores: Probabilistic and Statistical Modelling in Computer Science, Orange Grove Texts Plus, Gainesville, FL, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course gives students solid statistical background for computational intelligence.
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research.
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles in Computational Statistics, with emphasis on simulations and Monte Carlo studies; be able to apply correctly the course concepts on various applications and problem solving 	Written exam	70%
10.5 Seminar/Lab activities	 be able to apply course concepts and techniques on practical problems be able to implement course concepts and algorithms in Matlab be able to solve numerical statistical problems in Matlab 	 participation in discussing, solving and implementing problems throughout the semester individual presentation of solutions lab test (numerical statistical applications and simulations) 	30%

A grade of 5 or above (on a scale from 1 to 10) on <u>each</u> activity mentioned above (written test, seminar/lab evaluation)

11. Labels ODD (Sustainable Development Goals)¹

General label for Sustainable Development								
							9 MOUSTRY, INDIVIDUAL AND INTRASTRUCTURE	

Date Signature of course coordinator Signature of seminar coordinator

30.04.2025 Prof. Sanda Micula, PhD. Habil. Prof. Sanda Micula, PhD. Habil.

Date of approval Signature of the head of department

Prof. dr. Andrei Mărcuş

¹ Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.