SYLLABUS

(Discipline name)

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babes-Bolyai University Cluj
1.2. Faculty	Faculty Mathematics and Computer Science
1.3. Department	Department Mathematics and Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Databases
1.7. Form of education	

2. Information regarding the discipline

2.1. Name of the discipline	Database system implementation					Discipline code	MME8037	
2.2. Course coordinator			Ma	anuela	Petrescu	1		
2.3. Seminar coordinator				Ма	anuela	Petrescu	1	
2.4. Year of study 1 2.5. Semester 1 2.6. Type of evaluation				on	Е	2.7. Dis	cipline regime	required

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	3	of which: 3.2 course	2	3.3 seminar/laboratory/project	1S 1P	
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28	
Time allotment for individual study (ID) and self-study activities (SA)						
Learning using manual, course support, bibliography, course notes (SA)					28	
Additional documentation (in libraries, on electronic platforms, field documentation)					14	
Preparation for seminars/labs, homework, papers, portfolios and essays (mai mare sau egal cu nr. total ore prevăzut în calendarul disciplinei pentru temele de control)					50	
Tutorship						
Evaluations					2	
Other activities: [de ex.: comunicare bidirecțională cu titularul de disciplină / tutorele]						
3.7. Total individual study hours 94						
3.8. Total hours per semester	3.8. Total hours per semester 150					
3.9. Number of ECTS credits	credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	non
4.2. competencies	developing applications on relational DBMSs (SQL, relational algebra - completed an introductory course on Databases) sorting/searching techniques (quick/merge sorts, bin

5. Conditions (if necessary)

5.1. for the course	video projector
5.2. for the seminar /lab activities	video projector

6.1. Specific competencies acquired ¹

Professional/e ssential competencies

- have a good insight into how DBMSs function internally
- understand how to analyse the performance of data-intensive systems
- be familiar with a variety of programming techniques for large-scale data manipulation

Transversal competencies

• this course gives the basics for query optimization

6.2. Learning outcomes

0.2. LCa	al finig outcomes						
Kno wle dge	 ◆ Secondary-storage devices; disk access time; Input/Output model of computation; optimized disk access; File and System Structure: page layout and access; buffer management; file organizations (heap, sorted, clustered); row stores versus column stores; Indexes: Tree-structured (ISAM, B+tree); hash-based (static, extendible, linear); multi-dimensional (UB-tree, k-d-b tree, R-tree) External Sorting: external n-way merge sort; sorting based on B+trees; Query Evaluation: Selection (index-based, hash-based, arbitrary selection predicates); projection (duplicate elimination; hash-based, sorting-based); joins (nested-loops, index nested, block nested, sortmerge, hash joins); set operations; aggregation; impact of buffering, pipelining, blocking; evaluation techniques in existing systems; 						
Skil Is	The student is able to understand data storage in databases, buffer management, index techniques, query processing and the overview of query optimization in relational databases. The students will be able to understand query processing in relational databases Implementation of a simple Database Management System (DBMS).						
Respo nsibili ty and auton omy:	The student has the ability to work independently to obtain better performance on queries.						

7. Objectives of the discipline (outcome of the acquired competencies)

	The course objective is the presentation of data storage in databases, buffer
7.1 General objective of the	management, index techniques, query processing and the overview of query
1	optimization in relational databases. The students will be able to understand
discipline	query processing in relational databases Implementation of a simple Database
	Management System (DBMS)

 1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

7.2 Specific objective of the discipline

Secondary-storage devices; disk access time; Input/Output model of computation; optimized disk access; File and System Structure: page layout and access; buffer management; file organizations (heap, sorted, clustered); row stores versus column stores; Indexes: Tree-structured (ISAM, B+tree); hash-based (static, extendible, linear); multi-dimensional (UB-tree, k-d-b tree, R-tree) External Sorting: external n-way merge sort; sorting based on B+trees; Query Evaluation: Selection (index-based, hash-based, arbitrary selection predicates); projection (duplicate elimination; hash-based, sorting-based); joins (nested-loops, index nested, block nested, sortmerge, hash joins); set operations; aggregation; impact of buffering, pipelining, blocking; evaluation techniques in existing systems;

8. Content

8.1 Course	Teaching methods	Remarks
The structure of the physical database. The structure of the magnetic disc. Optimization of Disk-Block Access. RAID (redundant arrays of independent disks)	Presentation	
2. Buffer replacement policies	Presentation	
3.File organization: fixed-length records, variable-length records, sequential file, heap file, sorted file, multitable clustering file organization. Data dictionary storage	Presentation	
Ordered indices, dense and sparse indices and multilevel indices. Index Sequential Access Mechanism. Index update. Primary (clustering) and secondary (unclustering) indices.	Presentation	
5. B+-tree index files. Structure of a B+-tree. Queries on B+-trees. Algorithm for update.	Presentation	
6. Algorithm for delete in B+-tree. B+-tree file organization.	Presentation	
7. B-tree index files. Static hashing, hash indices. Dynamic hashing: extendable hashing, algorithms for update and delete in hash files. Comparison of ordered indexing and hashing.	Presentation	
8. Multiple-key access: using multiple single-key indices, indices on multiple keys, bitmaps indices.	Presentation	
9.0verview of query processing. Measures of query cost. Basic algorithm for selection implementation. (linear search, binary search, using indices, selections involving comparison)	Presentation	
10. Algorithms for external sorting. Presentation	Presentation	
11. Algorithms for projection, set operations, outer join and aggregation implementation.	Presentation	
12. Algorithms for join implementation (nested-loop join, block nested-loop join, indexed nested-loop join, merge join, hash join, cost of algorithms).	Presentation	
13. hash join, cost of algorithms Implementation of pipelining.	Presentation	
14. Overview of query optimization. Transformation of relational expressions, equivalence rules. Join ordering. Enumeration of equivalent expressions. Estimating statistics	Presentation	

of expression results: selection size estimation,							
join size estimation, size estimation for other							
operations. Materialized view, it's maintenance							
and using it in query optimization.							
Bibliography:							
	[MUW00] H. Garcia-Molina, J. D. Ullman, J. Widom: Database Systems - The Complete Book, Prentice Hall Upper Saddle						
River, New Jersey, 2008. [R02] R. Ramakrishnan:							
https://pages.cs.wisc.edu/~dbbook/ [SKS06]A.							
McGraw-Hill, New York, 2006. [V06] V. Varga, Inte							
2006.	erogarea bazeror de date distribuite,	Casa Carşii de Ştiinşa, Ciuj-Napoca,					
	m 11 1	n 1					
8.2 Seminar / laboratory	Teaching methods	Remarks					
project is highly structured, but there is							
enough slack in the specification so that							
creativity is both allowed and required. It is							
recommended to implement a server							
component and a client one. The client can be							
implemented as Windows interface, Web client							
or a command line parser.							
2. The Record Management (RM) Component:							
implement a set of functions for managing							
unordered files of database records. (There is							
recommended to use binary files to implement							
unordered files). You can consider fix length							
records; the management of variable length							
records is optional. One idea to implement the							
delete operation of a record is the logical							
delete. It means to store for every record in							
one bit, which store: the record is deleted or							
not. In order to not read the whole file to find							
deleted records and overwrite them with new							
ones, you can link the deleted records in a							
stack or queue. The top of the deleted records							
stack can be stored in the first record of the							
file. You have to store the system catalog. It will							
contain table names, index file names. For							
every table the file name, where the table is							
stored, the structure of the table, the							
constraints, the associated index files. For							
every index file, the search key, the type of it.							
You can implement the catalog in XML file. In							
Catalog.xml you can find an example.							
3. The Indexing (IX) Component: implement a							
facility for building indexes on records stored							
in unordered files. The indexing facility will be							
based on B+ trees or dynamic hashing.							
4. The Indexing (IX) Component: implement a							
facility for building indexes on records stored							
in unordered files. The indexing facility will be							
based on B+ trees or dynamic hashing.							
5. The System Management (SM) Component:							
This part will implement various database and							
system utilities, including data definition							
commands (at least integer and character data							
type), including primary key and foreign key							
constraint (primary key have to be							
implemented for one or more columns, but							
foreign key is optional to implement for more							
than one column), index definition commands							
and catalog management. For primary key you							
will create index file automatic. The System							
Management component will rely on the							

Record Management and Indexing components		
from Parts 1 and 2. It also will use a		
command-line parser or a graphical user		
interface.		
6. The Query Language (QL) Component: In		
this part students will implement a query		
language, which consists of user-level data		
manipulation commands, both queries and		
updates (SQL Select, Insert, Update, Delete can		
be used). The Query Language component will		
use a command-line parser or a graphical user		
interface. The queries have to be processed,		
using algorithms presented at the course.		
Features you have to implement in Select		
statement: selection, projection, join of tables,		
aggregation, cumulative functions, (subquery,		
order by is optional for extra points).		
7. Create a database with 3 tables with the		
project. Update the data and run queries		
Bibliography		
https://courses.cs.washington.edu/courses/cse4	144/22wi/	
	· '	

 $9. \ Corroborating \ the \ content \ of \ the \ discipline \ with \ the \ expectations \ of \ the \ epistemic \ community, \ professional \ associations \ and \ representative \ employers \ within \ the \ field \ of \ the \ program$

•	This course is in concordance with the program of similar courses in other universities:
	http://www.cs.ox.ac.uk/teaching/courses/databasesystemsimplementation/

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	exam	written test	50%
10.4 Course			
10.5 Seminar/laboratory	presenting the assignments	test with different inputs, asking questions	50%
, ,			

10.6 Minimum standard of performance

• Two labs have to be presented 50 points to accumulate

11. Labels ODD (Sustainable Development Goals)²

Not applicable	e.
----------------	----

Date: 03.10.2025	Signature of course coordinator	Signature of seminar coordinator
	Manuela Petrescu.	
		Mylan
Date of approval:		Signature of the head of department

Assoc.prof.phd. Adrian STERCA

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>