SYLLABUS

Complex Networks: Data Analysis Using Network Science

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeș Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Artificial Intelligence for Connected Industries
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the disciplin	ne Complex Science	Complex Networks: Data Analysis using Network Science			twork Discipline code	MME8218	
2.2. Course coordinator Prof. Dr. Camel				Camelia Chira			
2.3. Seminar coordinator				Prof. Dr. Camelia Chira			
2.4. Year of study 1	2.5. Semester	2	2.6. Type of evaluation	on	Е	2.7. Discipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 lab + 1 projec t
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (Time allotment for individual study (ID) and self-study activities (SA)				
Learning using manual, course support, bibliography, course notes (SA)					32
Additional documentation (in libraries, on electronic platforms, field documentation)					32
Preparation for seminars/labs, homework, papers, portfolios and essays					36
Tutorship					5
Evaluations					14
Other activities:					-
3.7. Total individual study hours119					
3.8. Total hours per semester	175				
3.9. Number of ECTS credits7					

4. Prerequisites (if necessary)

In rerequisites (in	necessary
4.1. curriculum	Algorithms and Programming, OOP
4.2. competencies	Good programming skills

5. Conditions (if necessary)

5.1. for the course	Projector
5.2. for the seminar /lab activities	Computers, Network visualization tools, Python/Java/C++ programming environment

6. Specific competencies acquired ¹

Professional/essential competencies	 Develop software prototype Translate requirements into visual design Create data models
Transversal competencies	think analyticallywork in teams

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Introduce the interdisciplinary academic field of network science and the modern theory and applications of network science
7.2 Specific objective of the discipline	 Describe the concepts and methods used in complex network analysis, define network models (random, small-world, scale-free) and processes on networks, theory and modelling of complex networks, analysis of real-world network datasets.

8. Content

8.1 Course	Teaching methods	Remarks
 Introduction to Network Science. Real- world networks Network properties and basic definitions Network metrics and centrality measures Random networks Small world networks Scale-free networks Growth and preferential attachment Community detection in networks Spreading phenomena Epidemic models over networks 	 Interactive exposure Presentation Explanation Practical examples Case-study discussions 	
1314. Student presentations		
Bibliography 1. Albert-Laszlo Barabasi, Network Science	ce, Cambridge University Press, 2016	5.

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

- 2. Mark Newman, Networks: An Introduction, Oxford University Press, 2010.
- 3. David Easley, Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.
- 4. Ernesto Estrada, The Structure of Complex Networks Theory and Applications, Oxford University Press, 2011.
- 5. Melanie Mitchell, Complexity: A Guided Tour, Oxford University Press, 2009.
- 6. Robert A. Hanneman, Mark Riddle. 2005. Introduction to social network methods. Riverside, CA: University of California, Riverside (published in digital form at http://faculty.ucr.edu/~hanneman)
- 7. D. J. Watts, P. S. Dodds, M. E. J. Newman. Identity and Search in Social Networks. Science, 296, 1302-1305, 2002.

8.2 Seminar / laboratory	Teaching methods	Remarks
The goal is to use network analysis methods and tools in real-world applications. Each student will work within a team to implement a project focusing on applying network analysis to real data . To achieve these goals, seminar/laboratory work (2 hours every 2 weeks) will have the following structure:		
 Introduction Explore social network analysis tools. Familiarize with the representation of networks. 		
 2. Network analysis and visualization Investigate network properties such as node degree distribution, clustering coefficient, and centrality in network datasets. Discover ways to visualize social networks. 		
 3. Network models Investigate network models (random graphs, small worlds, power-law) 		
 4. Network analysis project I Specify a theme for the project. Define your own complex networks from fiction and/or non-fiction. 		
 5. Network analysis project II Network visualization Explore the properties of the networks analysed e.g. node degree distribution, clustering coefficient, centrality, communities. 		
6-7. Network analysis project III - Analyse results - Prepare project presentation		

Bibliography

- 1. Albert-Laszlo Barabasi, Network Science, Cambridge University Press, 2016.
- 2. Mark Newman, Networks: An Introduction, Oxford University Press, 2010.
- 3. David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.

- 4. Ernesto Estrada, The Structure of Complex Networks Theory and Applications, Oxford University Press, 2011.
- 5. Jure Leskovec, Andrej Krevl, SNAP Datasets: Stanford Large Network Dataset Collection, http://snap.stanford.edu/data, 2014.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course exists in the studying program of all major universities abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade	
	Know basic concepts,	Written exam	10%	
10.4 Course	models and theories from the domain of complex networks	Research paper and presentation	40%	
10.5 Seminar/laboratory	Use network science and apply known concepts to perform complex network analysis	Project implementation and presentation	50%	
10.6 Minimum standard of performance				
Each student should obtair grade.	n minimum 5 for the written ex	am /research paper and prese	entation, as well as for the final	

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date:	Signature of course coordinator	Signature of seminar coordinator
14.04.2025	Prof. dr. Camelia Chira	Prof. dr. Camelia Chira

Date of approval:

...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.