SYLLABUS

Distributed and Federated Learning

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Artificial Intelligence for Connected Industries
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the d	iscipl	ine Distribut	Distributed and Federated Learning			Discipline code	MME8216		
2.2. Course coordinator				Univ. Lect. PhD Mihoc Tudor Dan					
2.3. Seminar coordinator			Univ. Lect. PhD Mihoc Tudor Dan						
2.4. Year of study	1	2.5. Semester	2	2.6. Type of evaluation	on	Е	2.7. Dis	scipline regime	Obligatory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/ project	0/1/1
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/ project	0/14/14
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bibliography, course notes (SA)				32	
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					7
Evaluations					8
Other activities					10
3.7. Total individual study hours 119					
3.8. Total hours per semester	175				
3.9. Number of ECTS credits	7				

4. Prerequisites (if necessary)

4.1. curriculum	Algorithms and Programming, OOP
4.2. competencies	Good programming skills

5. Conditions (if necessary)

5.1. for the course	Projector
5.2. for the seminar /lab activities	Computers, Network visualization tools, Python/Java/C++ programming
5.2. for the seminar / lab activities	environment

6. Specific compet	encies acquired
	C3. Analyse software specifications
	C6. Define software architecture
	C7. Develop software
Professional/	C13. Create data models
essential	C18. Develop with cloud services
competencies	C19. Implement cloud resources
	C23. Use software design patterns
	C24. Perform scientific research
	C26. Interpret technical requirements
	CT1. think analytically
	CT2. apply knowledge of science, technology and engineering
Transversal	CT3. work in teams
competencies	CT4. solve problems
	CT5. show entrepreneurial spirit

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• The aim is to provide an overview of federated and distributed learning in terms of performance and security. Both theoretical and practical aspects will be extensively explored to acquire solid expertise on both aspects.
7.2 Specific objective of the discipline	 Explain differences between centralized and decentralized learning Present and define methods most commonly used in federated learning. Create competencies in implementing federated learning in various fields (networks, security, health, or others).

8. Content

8.1 Course	Teaching methods	Remarks
 Course Overview. Introduction to Machine Learning and Federated Learning. Decentralized Optimization and Gradient 	-	
descent		
3. Federated learning: FedSGD and FedAvg	1	
4. Variations of Federated Aggregation	1	
5. Federated Averaging with Heterogeneous Data	Interactive exposure Presentation	
6. Communication-Efficient Learning of deep networks in Federated Learning	Explanation Practical examples	
7. Federated Multi-Task learning	Case-study discussion	
8. Threats, attacks, and defenses to federated learning		
9-11. Applications (Images, Networks, health, vehicle-to-vehicle communications, and/or others)		
1214. Student presentations		

Bibliography

1. H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas, Communication-Efficient Learning of Deep Networks from Decentralized Data, Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA. JMLR: W&CP volume 54.

2. Kiyoshi Nakayama, George Jeno, Federated Learning with Python, O'Reilly, October 2022.

- 3. Lam M. Nguyen, Trong Nghia Hoang, Pin-Yu Chen. Federated Learning. Theory and Practice. Elsevier 2024. ISBN: 9780443190384
- 4. Flower: A Friendly Federated Learning Framework <u>https://flower.ai/</u>
- 5. Computational Heterogeneity: FedProx and Scaffold, <u>https://flower.ai/docs/baselines/fedprox.html</u>; FedNova <u>https://flower.ai/docs/baselines/fednova.html</u>
- 6. Security in federated learning: Krum, Backdoor Federated Learning, SVFed https://github.com/IBM/federated-learning-lib/blob/main/examples/krum/README.md
- Intel & MobileODT Cervical Cancer Screening Dataset: https://www.kaggle.com/competitions/intel-mobileodt-cervical-cancer-screening
- 8. Datasets: <u>https://keras.io/api/datasets/; https://medmnist.com/; https://opendata-ajuntament.barcelona.cat/en; https://github.com/cedric-cnam/5G3E-dataset/</u>

<u>intepsi//grinubicom/ceuric enam/subbl</u> addas		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Introduction and project structure		
23. Build and scale a simple federated learning with MNIST, Cifar-10, Fashion-MNIST,	• Interactive exposure	
MedMNIST, Shakespeare, and BCN Open Data.	• Explanation	
45. Open-source Federated Learning tools	 Conversation 	
(Pytorch, Flower, etc.).	 Didactical demonstration 	
6. Federated learning with Non-IID data.		
7. Project presentations		

Bibliography

- H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas, Communication-Efficient Learning of Deep Networks from Decentralized Data, Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA. JMLR: W&CP volume 54.
- 10. Kiyoshi Nakayama, George Jeno, Federated Learning with Python, O'Reilly, October 2022.
- 11.Lam M. Nguyen, Trong Nghia Hoang, Pin-Yu Chen. Federated Learning. Theory and Practice. Elsevier 2024. ISBN: 9780443190384
- 12.Flower: A Friendly Federated Learning Framework <u>https://flower.ai/</u>
- 13.Computational Heterogeneity: FedProx and Scaffold, <u>https://flower.ai/docs/baselines/fedprox.html</u>; FedNova <u>https://flower.ai/docs/baselines/fednova.html</u>
- 14.Security in federated learning: Krum, Backdoor Federated Learning, SVFed https://github.com/IBM/federated-learning-lib/blob/main/examples/krum/README.md
- 15.Intel & MobileODT Cervical Cancer Screening Dataset: https://www.kaggle.com/competitions/intel-mobileodt-cervical-cancer-screening
- 16.Datasets: https://medmnist.com/; https://opendata-ajuntament.barcelona.cat/en; https://opendata-aju

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities abroad.
- The course aligns with current research and industry trends recognized by bodies such as IEEE and ACM.
- Federated Learning addresses key priorities in data privacy and decentralized AI, supporting skills demanded in Romania's digital economy, particularly in healthcare, mobility, and secure data systems, in line with the European e-Competence Framework (e-CF).

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	Knowledge of basic concepts, models and theories from the domain of social networks;	Written examination/ research report	50%

	Ability to apply known concepts to perform social network analysis.		
10.5 Seminar/laboratory	Specify, design, implement, and test social network analysis methods.	Lab reports, Project implementation and presentation	50%
10.6 Minimum standard of	performance		·
• Each student should obta final grade.	in a minimum of 5 for the writ	ten exam /research paper and	l presentation, as well as for the

11. Labels ODD (Sustainable Development Goals)¹

Not applicable.

Date:	Signature of course coordinator	Signature of seminar coordinator
11 April 2025	Univ. Lecturer PhD. Tudor Mihoc	Univ. Lecturer PhD. Tudor Mihoc

Date of approval:

...

Signature of the head of department

Assoc. Prof. PhD. Adrian STERCA

¹ Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable*.".