SYLLABUS Data Mining and Knowledge Discovery 2025-2026

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Artificial Intelligence for Connected Industries
Qualification	· · · · · · · · · · · · · · · · · · ·

2. Information regarding the discipline

2.1 Name of the discipline (en)			Data Mining and Knowledge Discovery			
(ro)			Data Mining și descoperirea cunoștințelor			
2.2 Course coordinator			Lect. Dr. Ioan-Coroiu Adriana Mihaela			
2.3 Seminar coordinator			Lect. Dr. Ioan-Coroiu Adriana Mihaela			
2.4. Year of study 1	2.5 Semeste	2	2.6. Type of evaluation	Ε	2.7 Type of discipline	Optional
2.8 Code of the discipline	MME8183					

3. Total estimated time (hours/semester of didactic activities)

5. Four estimated time (nours) semester of diductic derivities)					
3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 lab+1
				seminar/laboratory	project
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laborator	
				у	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					36
Additional documentation (in libraries, on electronic platforms, field documentation)					36
Preparation for seminars/labs, homework, papers, portfolios and essays					36
Tutorship					3
Evaluations					8
Other activities:					-
3.7 Total individual study hours 119					

5.7 Total mulvidual study nouis	11)
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Algorithms, data structures, statistics
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	Videoprojector
5.2. for the seminar /lab	Computers, specific development environment
activities	

6. 6.1. Specific competencies acquired

-	0.0	<u> n p</u>		
		S	C5.3 Use of databases methodologies and design environments for particular problems	
	Professional	competencies	C5.4 Quality evaluation of different database management systems in terms of structure functionality and extensibility	è,
	Pro	com	C5.5 Implementation of database projects	
			CT1. Application of efficient work rules and responsible attitudes towards the scientific	с
			domain, for the creative exploitation of one's own potential according to the principles a	and
	cies		rules of professional ethics	
	teno		CT2. Efficient conduct of activities organized in an interdisciplinary group and	
	npe		development of empathic capacity of interpersonal communication, networking and	
	Transversal competencies		collaboration with diverse groups	
	ersa		CT3. Use of efficient methods and techniques for learning, information, research and	
	nsve		development of abilities for knowledge exploitation, for adapting to the needs of a dyna	mic
	[rai		society and for communication in a widely used foreign language.	
6.2. Le	-	ng out	comes	
			ident knows:	
Knowledge		•	Collection, representation, analysis and visualization of data from various fields (eg economics, finance, biology, natural sciences)	
owl	•		Classification of structured and unstructured data and information	
Kn		٠	Evaluation of data quality	
		The stu	ident is able to:	
Skills	•		Data management and preparation for analysis by sampling, normalizing, cleaning and extracting features / information from raw data	
Ski		•	Management of data science projects involving real-world information	
		•	Exploitation, discovery and innovation of analysis methods through interdisciplinary investigations	
lity wv:		The stu	ident has the ability to work independently to obtain:	
Responsibility		•	Applying scientific and analytical methods of data analysis to solve problems in different fields,	
pon	ant	-	developing creative thinking about data and making decisions	
Res		•	Collaboration within the team Providing reproducible data analysis	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To learn data mining and knowledge discovery concepts, methods and techniques
7.2 Specific objective of the discipline	• The students will learn various data analysis techniques and will apply these techniques for solving data mining problems using special software systems and tools.

8. Content

 Interactive exposure Presentation Evaluation 	
ExplanationPractical examplesCase-study discussions	
	1

Bibliography

1. S. Chakrabarti et al, Data Mining. Know It All, Morgan Kaufmann, 2009.

2. K. Cios, W. Pedrycz, R. Swiniarski, L. Kurgan, Data Mining. A Knowledge Discovery Approach, Springer, 2007.

3. J. Han, M. Kamber, Data Mining: Concepts and Techniques, 2nd Edition, Morgan Kaufmann, 2006.

4. P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison Wesley, 2006.

5. D. Larose, Discovering Knowledge in Data. An Introduction to Data Mining, John Wiley & Sons, 2005.

6. Han, J., Kamber, M., Data Mining: Concepts and Techniques, 1st Edition, Morgan Kaufmann, 2000. Weka system and documentation (http://www.cs.waikato.ac.nz/ml/weka/). Weka is a suite of machine learning / data mining software. It contains Java implementation for various mining algorithms, data preprocessing filters, and experimentation capabilities. Weka is free open-source software under the GNU General Public License (GPL).

8.2 Seminar / laboratory	Teaching methods	Remarks
1-2. Data preprocessing	• Interactive exposure	
3. Association Rules	Explanation	
4. Clustering	Conversation	
5-6. Classification	 Didactical demonstration 	
7. Students project presentations		

Bibliography

1. S. Chakrabarti et al, Data Mining. Know It All, Morgan Kaufmann, 2009.

2. K. Cios, W. Pedrycz, R. Swiniarski, L. Kurgan, Data Mining. A Knowledge Discovery Approach, Springer, 2007.

3. J. Han, M. Kamber, Data Mining: Concepts and Techniques, 2nd Edition, Morgan Kaufmann, 2006.

4. P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison Wesley, 2006.

5. D. Larose, Discovering Knowledge in Data. An Introduction to Data Mining, John Wiley & Sons, 2005.

6. Han, J., Kamber, M., Data Mining: Concepts and Techniques, 1st Edition, Morgan Kaufmann, 2000.
7. Weka system and documentation (http://www.cs.waikato.ac.nz/ml/weka/). Weka is a suite of machine learning / data mining software. It contains Java implementation for various mining algorithms, data preprocessing filters, and experimentation capabilities. Weka is free open-source software under the GNU General Public License (GPL).

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the curriculum of many universities in the world.
- The results of course are considered by software companies particularly useful and topical,

developing needed abilities in modelling and visualization of data.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Know concepts and	Report presentation	40%			
	methods from the domain of data mining and knowledge discovery	Written exam	10%			
10.5 Seminar/lab activities	Apply data mining techniques in real problems	Projects implementation and presentation	50%			
10.6 Minimum performance standards						
Each student should obtain minimum 5 for the final grade. In order to obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts of data preparation in order to analyze them.						

Date 10.06.2024

Signature of course coordinator S

Signature of seminar coordinator

Lect. Dr. Ioan-Coroiu Adriana Mihaela Lect. Dr. Ioan-Coroiu Adriana Mihaela

Date of approval

.....

Signature of the head of department

Assoc. prof. dr. Sterca Adrian