SYLLABUS

Artificial Intelligence and Machine Learning for Connected Systems

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Artificial Intelligence for Connected Industries
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the discipline	Artificia Learnin	Artificial Intelligence and Machine Learning for Connected Systems				Discipline c	ode	MME8213
2.2. Course coordinator Lect. Dr. Bo			Bogdan MURSA					
2.3. Seminar coordinator			Le	ect. Dr.	Bogdan MURSA			
2.4. Year of study 1 2	.5. Semester	1	2.6. Type of evaluation	on	Е	2.7. Discipline regim	ne	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 lab + 1 proje ct
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support, bibliography, course notes (SA)					32
Additional documentation (in libraries, on electronic platforms, field documentation)					32
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					14
Other activities:					-
3.7. Total individual study hours 119					
3.8. Total hours per semester 175					
3.9. Number of ECTS credits	3.9. Number of ECTS credits 7				

4. Prerequisites (if necessary)

4.1. curriculum	Algorithms, data structures, statistics
4.2. competencies	Good programming skills

5. Conditions (if necessary)

5.1. for the course	Projector
---------------------	-----------

	For the laboratory activity it is needed a computer with high
5.2. for the seminar /lab activities	processing speed and a Python programming environment are
	needed.

6.Specific competencies acquired ¹

Professional/essential competencies	CE1.1 Description of artificial intelligence concepts and research directions CE1.2 Evaluation of the quality and stability of the obtained solutions and their compar solutions obtained by traditional methods CE1.3 Using artificial intelligence methods, techniques and algorithms to model solution problems
Transversal competencies	 CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics CT2. Efficient conduct of activities organized in an interdisciplinary group and development of empathic capacity of interpersonal communication, networking and collaboration with diverse groups CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• The main objective of this course is to present the basic concepts related to machine learning (ML) projects, to introduce the main ML models and algorithms, and how to apply them in connected systems.
7.2 Specific objective of the discipline	 The course addresses both theoretical and practical aspects of machine learning (ML) and aims to provide an overview of the discipline and its main areas. By the end of the course, students will understand the basic principles of machine learning, the associated algorithmic approaches, and will have knowledge about the applications of machine learning in connected systems.

8. Content

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

8.1 Course	Teaching methods	Remarks
1. Introduction to AI & ML - General overview	 Interactive 	
of AI and ML, history, key concepts, and	exposure	
applications.	 Presentation 	
2. Practical Skills and Linear	 Explanation 	
Regression-	Practical	
Fundamentals of linear regression and	examples	
associated algorithms.		
3. Supervised Learning in Classification		
Problems I	discussions	
4. Supervised Learning in Classification		
Problems II		
5. Dimensionality Reduction - Concepts of		
dimensionality reduction, importance in ML.		
6. Unsupervised Learning - Introduction to		
unsupervised learning, key algorithms.		
7. Artificial Neural Networks - Fundamentals of		
neural networks.		
8. Deep Neural Networks (DNN) - Advanced		
neural networks, introduction to deep learning.		
9. Training Enhancement Techniques -		
Ensembles, boosting, bagging, techniques for		
Improving DNN performance.		
10. Applications in Connected Systems -		
Practical applications of machine learning in		
connected systems, case studies.		
11. Scalable ML Architectures in the Context		
of Big Data Connected Systems.		
12. Review and Practical Topics Discussion -		
Review of key concepts, Q&A session.		
13 & 14. Final Project Presentations.		

Bibliography

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 3. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- 4. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 5. T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- 6. James Kennedy, Russel Eberhart, Particle Swarm Optimisation, Proceedings of IEEE International Conference on Neural Networks. IV. pp. 1942–1948, 1995
- 7. Marco Dorigo, Christian Blum, Ant colony optimization theory: A survey, Theoretical Computer Science 344 (2005) 243 – 27
- 8. H.F. Pop, G. Şerban, Inteligență artificială, Cluj Napoca, 2004
- 9. D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- 10. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- 11. <u>I. Goodfellow</u>, Y. Bengio, <u>A. Courville</u>, Deep Learning, MIT Press, 2016 https://www.deeplearningbook.org/
- 12. D. J. Watts, P. S. Dodds, M. E. J. Newman. Identity and Search in Social

Networks. Science, 296, 1302-1305, 2002.

8.2 Seminar / laboratory	Teaching methods	Remarks
	 Interactive exposure 	
The goal is to use specific ML tools and	 Explanation 	
methods in real applications involving	 Conversation 	
connected systems. Each student will work in a	 Didactical 	
team to implement a project that aims to model	demonstration	
a solution using ML technology in a real-world		
connected systems problem.		
To achieve these objectives, the		
seminar/laboratory		
activity (2 hours every 2 weeks) has the following		
structure:		
1 Introduction		
1. Introduction		
connected systems		
 Eamiliarizing with datasets and specific 		
tools		
 Interactive exposure explanation 		
conversation_didactical		
demonstration.		
2. Data Analysis and Visualization Techniques		
 Applying preprocessing techniques 		
and algorithms in the context of real		
datasets, understanding advantages		
and disadvantages.		
 Discovering visualization methods. 		
3. Connected Systems and Big Data		
$_{\odot}$ Investigating data scalability in Big		
Data problems.		
 Working with real data from connected 		
systems.		
4. ML Solution Modeling Project in Connected		
Systems I		
\circ Specifying a project theme.		

	r	
 Choosing the dataset. 		
5. ML Solution Modeling Project in Connected		
Systems II		
 Exploring datasets. 		
 Exploring techniques to improve the 		
training results of an ML model		
6-7 MI Solution Modeling Project in Connected		
Systems III		
Systems in		
Analyzing results		
O Analyzing results.		
o Preparing project presentations.		
Bibliography		
1. S. Russell, P. Norvig, Artificial Intelligence: A M	odern Approach, Prentie	ce Hall, 1995
2 C. Grosan & Abraham Intelligent Systems: A	Modern Annroach, Spriv	nger 2011
2. O. Oroșan, A. Abraham, înterrigent Systems. A		
3. A. Hopgood, Intelligent Systems for Engineers	and Scientists, CRC Pre	ss, 2001
4. A. Geron, Hands-On Machine Learning with Sc	ikit-Learn and TensorFlo	ow,
https://github.com/ageron/handson-ml		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course exists in the studying program of all major universities abroad;

10. Evaluation

Type of activity	10.1 Evaluation	10.2 Evaluation	10.3 Share in the grade (%)
	criteria	methods	

10.4 Course	Understanding the basic concepts of the field Applying intelligent principles from the course content to solve complex and difficult problems	Written exam / research paper and presentation	50%
10.5 Seminar/lab activities	Specifying, designing, implementing, and testing intelligent methods Effectively solving problems using the previously implemented methods	Project implementation and presentation	50%
10.6 Minimum performance standards			
Each student should obtain minimum 5 for the written exam /research paper and presentation, as well as			

for the final grade.

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date: 15.04.2025 Signature of course coordinator

Lect. Dr. Bogdan MURSA

Signature of seminar coordinator

Lect. Dr. Bogdan MURSA

Date of approval:

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write "*Not applicable*.".