SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Distributed Systems in Internet
Qualification	

2. Information regarding the discipline

2.1 Name of the discipli	ine (en)	Computational Models for Embedded Systems			ems	
(ro)		Modele computationale pentru sisteme embedded				bedded
2.2 Course coordinator		PhD Associate Professor Andreea Vescan				
2.3 Seminar coordinator			PhD Associate Professor Andreea Vescan			
2.4. Year of study 1	2.5 Semester	1	2.6. Type of evaluation	E	2.7 Type of discipline	Compulsory
2.8 Code of the	MME8026					
discipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					84
Additional documentation (in libraries, on electronic platforms, field documentation)				14	
Preparation for seminars/labs, homework, papers, portfolios and essays				14	
Tutorship				3	
Evaluations				4	
Other activities:				0	

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	Video projector, Internet access
5.2. for the seminar /lab	• Laboratory with computers; model checking tools; LPCXpresso, Keil,
activities	LabView; FSM/PN tools.

6. Specific competencies acquired

Professional competencies	 Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Analysis, design, and implementation of software systems Proficient use of methodologies and tools specific to programming languages and software systems Organization of software production processes.
Transversal competencies	 Etic and fair behavior, commitment to professional deontology Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, negotiation abilities; Entrepreneurial skills; working with economical knowledge; continuous learning Good English communication skills.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 know and understand fundamental concepts of embedded computation;
	to develop skills in modeling embedded systems with various
	computational models;
	 to describe and verify safety and liveness properties of the system
	being modeled.
7.2 Specific objective of the	will acquire theoretical aspects regarding specification, designing and
discipline	verification of an embedded system;
	will acquire theoretical aspects regarding various computational
	models for embedded systems;
	will know how to model a system and specify restrictions on
	functionalities

8. Content

8.1 Course	Teaching methods	Remarks
Lectures content and schedule are tentative (will be		
modified according to the needs identified in class).		
1. Introduction. Model: Why? What? How?	Interactive exposure	
Types of systems.	Explanation, Conversation	
Requirements and Safety Requirements.	Didactical demonstration	
2. Model checking	Interactive exposure	
	Explanation, Conversation	
	Didactical demonstration	

3. Model checking	Interactive exposure
č	Explanation, Conversation
	Didactical demonstration
4. Synchronous models	Interactive exposure
Asynchronous models.	Explanation, Conversation
	Didactical demonstration
5. Automotive Invited Lecture	Interactive exposure
	Explanation, Conversation
	Didactical demonstration
6. Automotive Invited Lecture	Interactive exposure
	Explanation, Conversation
	Didactical demonstration
7. Finite State Machines (1)+(2)	Interactive exposure
	Explanation, Conversation
	Didactical demonstration
8. IoT + Real time:	Interactive exposure
	Explanation, Conversation
	Didactical demonstration
9. Petri nets	Interactive exposure
	Explanation, Conversation
	Didactical demonstration
10. Timed models	Interactive exposure
	Explanation, Conversation
	Didactical demonstration
11. Hybrid systems	Interactive exposure
	Explanation, Conversation
	Didactical demonstration
12. Dynamical systems	Interactive exposure
	Explanation, Conversation
	Didactical demonstration
13. Research report presentation by students	Interactive exposure
	Explanation, Conversation
	Didactical demonstration
14. Research report presentation by students	Interactive exposure
	Explanation, Conversation
	Didactical demonstration

Bibliography

Books

- [Kat08] C. Baier, J.-P. Katoen, Principles of Model Checking, ISBN 978-0-262-02649-9, 2008
- [Ari08] M. Ben-Ari, Principles of the Spin Model Checker, ISBN 978-1-84628-769-5, 2008
- [Noe05] T. Noergaard, Embedded systems architecture: a comprehensive guide to engineers and programmers, Elsevier, 2005
- [Hoa04] Hoare, CAR (2004) (1985), Communicating Sequential Processes, Prentice Hall International
- [Pon02] M. Pont, Embedded C, Addison-Wesley, 2002
- [Boo67] Taylor Booth (1967) Sequential Machines and Automata Theory, John Wiley and Sons, New York. Library of Congress Catalog Card Number: 67-25924.

Articles

[Har87] D. Harel, "Statecharts: A Visual Formalism for Complex Systems", Sci. Comput. Programming 8 (1987), 231-274

[Pet66] Petri, CA (1966) Communication with automata. DTIC Research Report AD0630125 **Tutorials**

During lectures/seminars/laboratories tutorials will be given for each assignment.

8.2 Seminar / laboratory	Teaching methods	Remarks
Seminar content and schedule are tentative (will be		
modified according to the needs identified in class).		
Seminar 1, 2, 3	Presentation, Conversation,	
Model Cheking	Problematizations, Discovery,	
 Specifying safety and liveness requirements. 	Individual study, Exercises	
Seminar 4, 5, 6	Presentation, Conversation,	
 Finite State Machines Project Activity 	Problematizations, Discovery,	
 Using Finite State Machines or/and PetriNets to 	Individual study, Exercises	
model an embedded system		
Seminar 7	Presentation, Conversation,	
Delivery of projects (not delivered in Seminar 3 or	Problematizations, Discovery,	
Seminar 6)	Individual study, Exercises	

Remark:

- Students will search and use model cheking tools suitable for their Model Checking Project Activity. http://spinroot.com/spin/whatispin.html
- Students will use LPCXpresso/Nucleo/LabVIEW for developing FSM -based embedded project
- Students will search and use FSM/PN tools suitable for their FSM/PN Project Activity.

Bibliography

See from Courses content.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;

http://www.seas.upenn.edu/~cis540/

https://inst.eecs.berkeley.edu/~ee249/fa07/

http://www.ict.kth.se/courses/IL2202/

http://users.abo.fi/lmorel/MoCs/

http://bears.ece.ucsb.edu/class/ece253/

• Course content is considered very important by the software companies for improving advance embedded systems modeling and verifying skills.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	The correctness and	Written exam (in the regular	50%
	completeness of the	session)	
	accumulated	InClass - Quiz	
	knowledge of	TakeHome - Evaluation of	
	computational models	the research report	
	for embedded systems.	documentation+presentation	
	Research report on embedded		
	system.		
10.5 Seminar/lab	Problem definition	Evaluation of investigation of	10%
activities		the Problem definition	
	Problem definition and	Evaluation of the project	20%

specification in JSpin,	(modeling, verification	
Show that it is possible	properties)	
to reach the desired		
end state		
Use Finite State Machine to	Evaluation of the project	20%
model the embedded system.	(modeling, I/O,	
·	computational model used)	
Students will have the	Bonus points	Bonus points at the
possibility of obtaining bonus		final grade (after
points at the final grade for		obtaining the final
additional activities that are		minimum required
related to Software systems		grade 5).
verification and validation:		,
conduction research/report and		
various activities during		
lectures.		

Remark evaluation: Research Paper on a topic related to Embedded systems as extra credit for evaluation. **Remark**.

- Seminar/Laboratory assignments/Projects laboratory work may not be redone in the retake session.
- Written exams can be taken during the retake session.
- Students from Previous Years to the current academic year
 - o All the above rules apply to students from previous years.
 - Seminar/Laboratory assignments and practical laboratory activity must be redone during didactic activity time (in the 14 weeks before normal session).
- The final grade computed with the given formula must be at least 5 in order to pass the exam. Final grade = 50% WrittenExan (10% InClassExam+40% ReportSLR)+10% ProblemStatement+20% ProjectJSpin+20% ProjectFSM

10.6 Minimum performance standards

Each student has to prove that:

- > (s)he acquired an acceptable level of knowledge and understanding of the computational models for embedded systems;
- > (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.
 - > Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date Signature of course coordinator Signature of seminar coordinator 29 April 2024 Assoc. Prof. PhD. Andreea Vescan, Assoc. Prof. PhD. Andreea Vescan

Date of approval	Signature of the head of department
	Assoc. Prof. PhD. Sterca Adrian