SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Distributed Systems in Internet

2. Information regarding the discipline

2.1 Name of the discipline			Modular Arithmetics and Cryptography				
2.2 Course coordinator			Prof.PhD. Septimiu Crivei				
2.3 Seminar coordinator			Prof.PhD. Septimiu Crivei				
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	DC
study		Semester		evaluation		discipline	
2.8 Course Code MME3051				•			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1 seminar+
					1 project
3.4 Total hours in the	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
curriculum					
Time allotment:					hours
Learning using manu	al, cou	rse support, bibliograph	y, cou	rse notes	28
Additional document	ation (i	n libraries, on electronic	c platf	orms, field documentation)	28
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship	10				
Evaluations	14				
Other activities:					0
3.7 Total individual s	tudy	94			
hours					
3.8 Total hours 150					
per semester					
3.9 Number of 6					
ECTS credits					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

\Box 5.1. for the course	
----------------------------	--

5.2. for	the seminar /lab
activities	
6. Speci	ific competencies acquired
sa	☐ Understanding and use of basic algorithms and mathematical concepts related to cryptography
ons nci	☐ Ability to understand and approach problems and projects of information security
Professional competencies	
ofe mp	
<u>G</u> <u>5</u>	
	☐ Ability to work independently and/or in a team in order to solve problems and realize projects
al ies	in defined professional contexts
enc	
pet	
Transversal competenci	
= 3	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	☐ Study of the main algorithms in cryptography
7.2 Specific objective of the	☐ Implementation and use of algorithms in cryptographic
discipline	applications

8. Content

8.1 Course	Teaching methods	Remarks
1. Algorithm complexity, modular arithmetics	exposition, algorithmization	
2. Primality and factorization	exposition, algorithmization	
3. Finite fields and discrete logarithms	exposition, algorithmization	
4. Classical cryptography	exposition, algorithmization	
5. DES, AES	exposition, algorithmization	
6. Stream ciphers	exposition, algorithmization	
7. Block ciphers	exposition, algorithmization	
8. RSA cryptosystem	exposition, algorithmization	
9. ElGamal cryptosystem	exposition, algorithmization	
10. Hash functions	exposition, algorithmization	
11. Digital signatures	exposition, algorithmization	
12. Key-related protocols	exposition, algorithmization	
13. Practical aspects	exposition, algorithmization	
14. Quantum cryptography	exposition, algorithmization	

Bibliography

- 1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.
- 2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.
- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]

5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.			
8.2 Seminar / laboratory	Teaching methods	Remarks	
1. Algorithm complexity, modular arithmetics	problematization, exercise		
2. Primality and factorization	problematization, exercise		
3. Finite fields and discrete logarithms	problematization, exercise		
4. Classical cryptography	problematization, exercise		
5. DES, AES	problematization, exercise		
6. Stream ciphers	problematization, exercise		
7. Block ciphers	problematization, exercise		
8. RSA cryptosystem	problematization, exercise		
9. ElGamal cryptosystem	problematization, exercise		
10. Hash functions	problematization, exercise		
11. Digital signatures	problematization, exercise		
12. Key-related protocols	problematization, exercise		
13. Practical aspects	problematization, exercise		
14. Quantum cryptography	problematization, exercise		

Bibliography

- 1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.
- 2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.
- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]
- 5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

☐ The content is directed towards applications of cryptography. The topic is present in r	nany master
programs from other universities and has special interest for prospective employers.	

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade	
10.4 Course	Use of basic concepts in examples	Presentation	1/3	
10.5 Seminar/lab	Problem solving, project presentation	Test, project	2/3	
10.6 Minimum performance standards				
☐ Grade 5				

Date Signature of course coordinator Signature of seminar coordinator

26.04.2024 Prof. PhD. Septimiu CRIVEI Prof. PhD. Septimiu CRIVEI

Date of approval Signature of the head of department

Prof.PhD. Andrei MARCUS