SYLLABUS

${\bf 1.} \ In formation \ regarding \ the \ programme$

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme / Qualification	Advanced Mathematics

${\bf 2.} \ {\bf Information} \ {\bf regarding} \ {\bf the} \ {\bf discipline}$

2.1 Name of the discipl		scipline		ctor Optimization			
2.2 Course coordinator			Tit	periu Trif			
2.3 Seminar coordi	r coordinator		Tiberiu Trif				
2.4. Year of study	2	2.5 Semester	3	2.6. Type of	VP	2.7 Type of	Optional
				evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar	14
Time allotment:					hours
Learning using manual, course support, bibliography, course notes 30					30
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					14
Evaluations				29	
Other activities:				-	

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical analysis 1 (Analysis on R);
	• Mathematical analysis 2 (Differential Calculus on R ⁿ).
4.2. competencies	Ability to use abstract notions, theoretical results and practical
	methods of Mathematical Analysis.

5. Conditions (if necessary)

5.1. for the course	Lecture room equipped with a beamer	
5.2. for the seminar /lab	Standard room	
activities		

6. Specific competencies acquired

Professional competencies '	Ability to use appropriate mathematical methods and implementable algorithms for solving practical vector optimization problems.
Transversal competencies	To apply rigorous and efficient work rules, by adopting a responsible attitude towards the scientific and didactic activities. To develop the own creative potential in specific areas, following the professional ethical norms and principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Students should acquire knowledge about vector (multicriteria) optimization.
discipline	
7.2 Specific objective of the	Students will study several classes of practical vector optimization problems.
discipline	

8. Content

8.1 Course	Teaching methods	Remarks
1. Preorder relations; maximal elements of a set with	Direct instruction,	
respect to a preference relation; formulation of general	mathematical proof,	
optimization problems. Linear prorder relations	exemplification	
(compatible with the vector addition and		
multiplication of vectors by scalars).		
2. Cones; characterizations of (convex, pointed,	Direct instruction,	
generating, totally-generating) cones; the relationship	mathematical proof,	
between linear preorder relations and convex cones.	exemplification	
Topological properties of convex cones: (relative)		
solid and closed convex cones; the polar cone of a set;		
polyhedral cones.		
3. Concepts of efficiency in vector optimization;	Direct instruction,	
efficient points and weakly efficient points w.r.t. a	mathematical proof,	
convex cone; efficient solutions and weakly efficient	exemplification	
solutions of vector optimization problems.		
4. Monotone and strictly monotone scalar functions	Direct instruction,	
(w.r.t. a preorder relation) and the their extremum	mathematical proof,	
points; examples of linear/nonlinear monotone	exemplification	
functions; conical sections of a set; the existence of		
efficient/weakly efficient points.		
5. Sufficient conditions for efficiency and weak	Direct instruction,	
efficiency. Cone-convex sets; necessary conditions for	mathematical proof,	
weak-efficiency. Proper efficient points.	exemplification	
6. Cone-convex vector-valued functions, their	Direct instruction,	
characterizations by means of the epigraph and the	mathematical proof,	
polar cone; the cone-convexity of the images of	exemplification	
convex sets by cone-convex functions.		
7. Explicitly cone-quasiconvex functions and	Direct instruction,	
lexicographic quasiconvex vector-valued functions,	mathematical proof,	
their characterization and some of important	exemplification	
properties; the relationship between explicit cone-		
convexity and lexicographic quasiconvexity.		

8. Scalarization methods for vector optimization problems: the weighting method (for convex objective functions); the parametric method (for quasiconvex/, explicitly quasiconvex/ explicitly quasiaffine objective functions).	Direct instruction, mathematical proof, exemplification
9. The geometric and topological structure of the boundary of a closed radiant set (the homeomorphism of Bonnisseau-Cornet).	Direct instruction, mathematical proof, exemplification
10. Simply shaded and completely shaded sets (w.r.t. a convex cone) and their characterizations. The connectedness /contractibility of the sets of efficient points.	Direct instruction, mathematical proof, exemplification
11. The role of Helly's Theorem in reducing the number of criteria involved in vector optimization with convex/quasiconvex objective functions.	Direct instruction, mathematical proof, exemplification
12. Pareto reducible vector optimization problems involving explicitly / lexicographic quasiconvex objective functions.	Direct instruction, mathematical proof, exemplification
13. Approximate efficient / weakly efficient solutions and their role in numerical methods.	Direct instruction, mathematical proof, exemplification
14. Efficient sequences and their relationship with the minimizing sequences of certain scalarization functions.	Direct instruction, mathematical proof, exemplification

Bibliography

- 1. BRECKNER, B.E., POPOVICI, N.: Convexity and Optimization. An Introduction, EFES, Cluj-Napoca, 2006.
- 2. EHRGOT, M.: Multicriteria Optimization. Springer, Berlin Heidelberg New York, 2005.
- 3. GOEPFERT, A., RIAHI, H., TAMMER, C., ZALINESCU, C.: Variational Methods in Partially Ordered Spaces. Springer-Verlag, New York, 2003.
- 4. JAHN, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin, 2004.
- 5. LUC, D.T.: Theory of Vector Optimization. Springer Verlag, Berlin, 1989.
- 6. POPOVICI, N.: Optimizare vectoriala, Casa Cartii de Stiinta, Cluj-Napoca, 2005.

8.2 Seminar	Teaching methods	Remarks
1. Geometric interpretation of the preference relations	Problem-based	
induced by the objective functions of some practical	instruction, debate,	
optimization problems (Fermat-Weber-type location	mathematical proofs	
problems, resource allocation problems, etc.)		
2. Particular classes of convex cones in the <i>n</i> -	Problem-based	
dimensional Euclidean space (polyhedral cones, the	instruction, debate,	
lexicographic cone, Phelps-type cones).	mathematical proofs	
3. Exercises involving the concepts of: polar cone,	Problem-based	
basis of a convex cone, the (relative) interior, and the	instruction, debate,	
facial structure of a convex cone.	mathematical proofs	
4. Finding the efficient / weakly efficient solutions of	Problem-based	
certain vector optimization problems by a geometric	instruction, debate,	
approach.	mathematical proofs	
5. Exercises concerning the (strict) monotony of	Problem-based	
certain scalar functions.	instruction, debate,	
	mathematical proofs	
6. Identifying the (weakly) efficient solutions of some	Problem-based	
concrete vector optimization problems in R ² by means	instruction, debate,	
of the necessary and sufficient conditions of (weakly)	mathematical proofs	
efficiency.	_	
7. Geometric representations of the direct images of	Problem-based	

convex/polyhedral sets by certain cone-convex	instruction, debate,
functions and their (weakly) efficient points.	mathematical proofs
8. Geometric representation of the level sets of certain	Problem-based
cone-quasiconvex vector-valued functions.	instruction, debate,
•	mathematical proofs
9. Exercises concerning explicitly quasiconvex	Problem-based
functions (in particular, lexicographic convex	instruction, debate,
functions and linear-fractional functions).	mathematical proofs
10. Bicriteria optimization problems solved by a	Problem-based
geometrical approach.	instruction, debate,
	mathematical proofs
11. Linear vector optimization problems solved by the	Problem-based
weighting scalarization method.	instruction, debate,
	mathematical proofs
12. Nonlinear vector optimization problems solved by	Problem-based
the weighting scalarization method.	instruction, debate,
	mathematical proofs
13. Linear vector optimization problems solved by the	Problem-based
parametric method.	instruction, debate,
	mathematical proofs
14. Nonlinear vector optimization problems solved by	Problem-based
the parametric method.	instruction, debate,
	mathematical proofs

Bibliography

- 1. ALZORBA, S., GUNTHER, C., POPOVICI, N., TAMMER, C.: A new algorithm for solving planar multiobjective location problems involving the Manhattan norm, European Journal of Operational Research, Vol. 258 (1) 2017, pp. 35-46.
- 2. EHRGOT, M.: Multicriteria Optimization. Springer, Berlin Heidelberg New York, 2005.
- 3. POPOVICI, N.: Pareto reducible multicriteria optimization problems, Optimization, Vol. 54 (2005), pp. 253-263.
- 4. SAWARAGI, Y., NAKAYAMA, H., TANINO, T.: Theory of Multiobjective Optimization. Academic Press, New York, 1985.
- 5. YU, P.L.: Multiple criteria decision making: concepts, techniques and extensions. Plenum Press, New York London, 1985.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards

10. Evaluation

- Knowledge of theoretical concepts and capacity to	Written exam	grade (%) 75%
rigorously prove the main theorems; - Ability to solve practical exercises and theoretical problems		
- Attendance and active class participation	Continuous evaluation	25%
e standards		•
1 •	theorems; - Ability to solve practical exercises and theoretical problems - Attendance and active class participation	cheorems; - Ability to solve practical exercises and theoretical problems - Attendance and active class participation standards Continuous evaluation

Date	Signature of course coordinator	Signature of seminar coordinator
28.4.2024	Tiberiu Trif	Tiberiu Trif
Date of approval		Signature of the head of department
28.4.2024		