SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme / Qualification	Advanced Mathematics

2. Information regarding the discipline

2.1 Name of the discipline (en) (ro)		Applied Functional Analysis (Analiză funcțională aplicată)					
2.2 Course coordinator		Conf. dr. Brigitte Breckner					
2.3 Seminar coordinator		Conf. dr. Brigitte Breckner					
2.4. Year of study	dy 1 2.5 Semester		2	2.6. Type of evaluation	Е	2.7 Type of discipline	О
2.8 Code of the discipline MME3005							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar/laboratory	14
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					21

Evaluations		8
Other activities:		17
3.7 Total individual study hours	133	
3.8 Total hours per semester	175	
3.9 Number of ECTS credits	7	

4. Prerequisites (if necessary)

4.1. curriculum	linear algebra; general topology; mathematical analysis; the attendance of the functional analysis course from the bachelor level is NOT necessary
4.2. competencies	abstract and logical thinking

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab activities	

6. Specific competencies acquired

Pro fess ion al co mp ete nci es	C1.1 To identify the appropriate notions, to describe the speficic topic and to use an appropriate language.C1.3 To apply correctly basic methods and principles in order to solve mathematical problems.
Tr ans ver sal co mp	CT1 To apply efficient and rigorous working rules, to manifest responsible attitudes towards the scientific and didactic fields, respecting the professional and ethical principles.

ete nci	
es	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Presentation of the spectral theory of operators on Banach spaces, resp., on Hilbert spaces Presentation of various applications of the spectral theory of operators
7.2 Specific objective of the discipline	 Acquirement of knowledge specific to higher functional analysis To become familiar with the abstract thinking and the problematization specific to functional analysis

8. Content

8.1 Course	Teaching methods	Remarks
Normed spaces (definition; properties; Banach spaces; inner product spaces; Hilbert spaces; examples)	Lecture with mathematical proofs, problematization, discussion	
2. Linear continuous operators between normed spaces (characterizations of the continuity of linear operators between normed spaces; the normed space of linear continuous operators between normed spaces)	Lecture with mathematical proofs, problematization, discussion	
3. Linear continuous operators between normed spaces (the open mapping theorem; the bounded inverse theorem; the closed graph theorem)	Lecture with mathematical proofs, problematization, discussion	
4. Linear continuous functionals on normed spaces (characterizations of the continuity of linear functionals; the dual of a normed space; the dual of a Hilber space). Reflexive normed spaces	Lecture with mathematical proofs, problematization, discussion	
5. Spectral theory of operators on Banach spaces (closed operators; the resolvent set, the resolvent, the spectrum, the point spectrum, the approximative point spectrum, the continuous spectrum, and the residual spectrum of an operator)	Lecture with mathematical proofs, problematization, discussion	

6. Spectral theory of operators on Banach spaces (the adjoint of a vector subspace of the product of two normed spaces; the adjoint of a linear densely defined operator)	Lecture with mathematical proofs, problematization, discussion
7. Spectral theory of operators on Banach spaces (relationships between a linear densely defined operator and its adjoint; properties of the resolvent set and of the spectrum of adjoint operators)	Lecture with mathematical proofs, problematization, discussion
8. Spectral theory of operators on Banach spaces (compact operators; characterizations and properties of compact operators)	Lecture with mathematical proofs, problematization, discussion
9. Spectral theory of operators on Banach spaces (the Riesz-Schauder theorem for compact operators, the spectral theorem for compact operators)	Lecture with mathematical proofs, problematization, discussion
10. Spectral theory of operators on Hilbert spaces (the adjoint operator of a linear continuous operator between Hilbert spaces; properties of the adjoint operator; unitary, selfadjoint, normal, and symmetric operators)	Lecture with mathematical proofs, problematization, discussion
11. Spectral theory of operators on Hilbert spaces (the Hellinger-Toeplitz theorem; spectral properties of normal operators; spectral properties of selfadjoint operators)	Lecture with mathematical proofs, problematization, discussion
12. Spectral theory of operators on Hilbert spaces (the spectral theorem for compact, selfadjoint operators; the spectral theorem for compact, normal operators)	Lecture with mathematical proofs, problematization, discussion
13. Banach algebras (definition; the resolvent set, the spectrum, and the resolvent of an element; properties of the resolvent; ideals and maximal ideals in Banach algebras; characters)	Lecture with mathematical proofs, problematization, discussion
14. Banach algebras (the Gelfand space of a Banach algebra; the theorem of Gelfand-Mazur; the Gelfand transform)	Lecture with mathematical proofs, problematization, discussion

Bibliography

- 1. BRECKNER W. W.: Analiză funcțională, Presa Universitară Clujeană, Cluj-Napoca, 2009.
- 2. BREZIS H.: Analiză funcțională. Teorie și aplicații, Ed. Academiei Române, București, 2002.
- 3. DUNFORD N. And SCHWARTZ J. T.: Linear Operators. Part 1: General theory, Interscience Publishers, New York, 1958.
- 4. DUNFORD N. And SCHWARTZ J. T.: Linear Operators. Part 2: Spectral theory, Interscience Publishers, New York, 1963.
- 5. HEUSER H.: Funktionalanalysis. Theorie und Anwendung, 3. Auflage, B. G. Teubner, Stuttgart, 1992.
- 6. WERNER D.: Funktionalanalysis, Vierte, überarbeitete Auflage., Springer-Verlag, Berlin Heidelberg New York, 2002.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. From the oscillating swing to Fourier series	Problematization, discussion, team work	
2. Examples of operators (integral, differentiation, interpolation, approximation, from quantum mechanics)	Problematization, discussion, team work	
3. Applications of the results presented in the third lecture (initial value problems for linear differential equations; approximate solutions of operator equations)	Problematization, discussion, team work	
4. Examples/Counterexamples for reflexive normed spaces	Problematization, discussion, team work	
5. The spectral radius of an operator. Determination of the resolvent set, the spectrum, the approximative point spectrum, the continuous spectrum, and the residual spectrum of concrete operators	Problematization, discussion, team work	
6. Determination of the resolvent set, the spectrum, the approximative point spectrum, the continuous spectrum, and the residual spectrum of concrete operators	Problematization, discussion, team work	
7. A characterization of adjoint operators. Examples	Problematization, discussion, team work	
8. Examples of compact operators	Problematization, discussion, team work	

9. Applications of the spectral theorem for compact operators (the Sturm-Liouville eigenvalue problem)	Problematization, discussion, team work
10. Unitary, selfadjoint, normal, and symmetric operators on Hilbert spaces (examples; properties)	Problematization, discussion, team work
11. Unitary, selfadjoint, normal, and symmetric operators on Hilbert spaces (examples; properties)	Problematization, discussion, team work
12. Applications of the spectral theorems presented in the lecture (the square root of a positive operator)	Problematization, discussion, team work
13. Banach algebras (examples)	Problematization, discussion, team work
14. Banach algebras (the Gelfand space of concrete Banach algebras)	Problematization, discussion, team work

Bibliography

- 1. BREZIS H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
- 2. HEUSER H.: Funktionalanalysis. Theorie und Anwendung, 3. Auflage. B. G. Teubner, Stuttgart, 1992.
- 3. WERNER D.: Funktionalanalysis. Vierte, überarbeitete Auflage, Springer-Verlag, Berlin Heidelberg New York, 2002.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• Functional analysis is one of the most important branches of mathematics, having applications in various domains (numerical analysis, approximation theory, optimization, PDEs, probability theory, mathematical and theoretical physics). This discipline both provides the theoretical background for such applications and gives samples of them.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results	Midterm written test	45%

	Ability to perform proofs	Final written test	45%
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the lecture	Own contributions to the exercise classes	10%
	There are valid the official rules of the faculty concerning the attendance of students to teaching activities.		

10.6 Minimum performance standards

Basic knowledge on the topics from the lectures and seminars

Date Signature of course coordinator Signature of seminar coordinator

25.04.2024 Conf. univ. dr. Brigitte E. Breckner Conf. univ. dr. Brigitte E. Breckner

Date of approval Signature of the head of department

29.04.2024 Prof. univ. dr. Andrei-Dorin Mărcuș