LEHRVERANSTALTUNGSBESCHREIBUNG

1. Angaben zum Programm

1.1 Hochschuleinrichtung	Babeş-Bolyai Universität Cluj-Napoca
1.2 Fakultät	Mathematik und Informatik
1.3 Department	Mathematik
1.4 Fachgebiet	Informatik
1.5 Studienform	Bachelor
1.6 Studiengang /	Informatik
Qualifikation	

2. Angaben zum Studienfach

2.1 LV-Bezeichi	nung	Geome	trie				
2.2 Lehrverantwortlicher –		Lektor Dr. Veronica Nechita					
Vorlesung							
2.3 Lehrverantwortlicher – Seminar		nar	Lektor Dr. Veronica Nechita				
2.4 Studienjahr	1	2.5	2	2.6.	Kontinuierliche	2.7 Art der	Verpflichtend
		Semester		Prüfungsform	und punktuelle	LV	
					Bewertung		

3. Geschätzter Workload in Stunden

3.1 SWS	4	von denen: 3.	2	2	3.3 Seminar/Übung	2
		Vorlesung				
3.4 Gesamte Stundenanzahl im	56	von denen: 3.	5	28	3.6 Seminar/Übung	28
Lehrplan		Vorlesung				
Verteilung der Studienzeit:						Std.
Studium nach Handbücher, Kursbuch, Bibliographie und Mitschriften					15	
Zusätzliche Vorbereitung in der Bibliothek, auf elektronischen Fachplattformen und durch					15	
Feldforschung						
Vorbereitung von Seminaren/Übungen, Präsentationen, Referate, Portfolios und Essays					30	
Tutorien					6	
Prüfungen					3	
Andere Tätigkeiten:					-	
2.7. C 1 1 - 1 C - 11		<i>c</i> 0				

3.7 Gesamtstundenanzahl Selbststudium	69
3.8 Gesamtstundenanzahl / Semester	125
3.9 Leistungspunkte	5

4. Voraussetzungen (falls zutreffend)

4.1 curricular	Grundkenntnisse im Gebiet der Algebra, Analysis und Geometrie
4.2 kompetenzbezogen	•

5. Bedingungen (falls zutreffend)

5.1 zur Durchführung der	•
Vorlesung	

5.2 zur Durchführung des	•
Seminars / der Übung	

6. Spezifische erworbene Kompetenzen

zen ,	K 4.2 Interpretation der formalen Modelle der Mathematik und Informatik
jeten	K 4.3 Identifizierung der geeigneten Modelle und Methoden für die Lösung realer Probleme
Berufliche Kompetenzen	K 4.5 Einbindung formaler Modelle für spezifische Anwendungen in verschiedenen Bereichen
Transversale Kompetenzen Beru	TK1 Anwendung der Regeln für gut organisierte und effiziente Arbeit, für verantwortungsvolle Einstellungen gegenüber der Didaktik und der Wissenschaft, für kreative Förderung des eigenen Potentials, mit Rücksicht auf die Prinzipien und Normen der professionellen Ethik TK3 Anwendung von effizienten Methoden und Techniken für Lernen, Informieren und Recherchieren, für das Entwicklen der Kapazitäten der praktischen Umsetzung der Kenntnisse, der Anpassung an die Bedürfnisse einer dynamischen Gesellschaft, der Kommunikation in rumänischer Sprache und in einer internationalen Verkehrssprache

7. Ziele (entsprechend der erworbenen Kompetenzen)

7.1 Allgemeine Ziele der Lehrveranstaltung	 kritisches Verständnis der Theorien und Grundsätze der analytischen Geometrie; setzen der notwendigen Grundlagen der analytischen Geometrie, welche für Computergrafik notwendig sind.
7.2 Spezifische Ziele der Lehrveranstaltung	 Wissenvermittelung im Bereich der analytischen und projektiven Geometrie Befähigung im Umgang mit geometrischen Transformationen in der Ebene und im 3-dimensionalen Raum

8. Inhalt

8.1 Vorlesung	Lehr- und Lernmethode	Anmerkungen
1. Vektorrechnung	Vortrag, Diskussion, Beweis	
2. Skalarprodukt	Vortrag, Diskussion, Beweis	
3. Vektorprodukt. Spatprodukt.	Vortrag, Diskussion, Beweis	
4. Die Gerade in der Ebene	Vortrag, Diskussion, Beweis	
5. Die Ebene und die Gerade im 3-	Vortrag, Diskussion, Beweis	
dimensionalen Raum		
6. Lagen, Winkel und Abstände der	Vortrag, Diskussion, Beweis	
Geraden und Ebenen im 3-		

dimensionalen Raum	
7. Kegelschnitte. Ellipse und Hyperbel	Vortrag, Diskussion, Beweis
8. Kegelschnitte. Parabel. Allgemeine	Vortrag, Diskussion, Beweis
Gleichung	
Quadriken. Ellipsoid, einschlaliges und zweischaliges Hyperboloid	Vortrag, Diskussion, Beweis
10. Quadriken. Elliptisches und	Vortrag, Diskussion, Beweis
hyperbolisches Paraboloid, Kegel,	
Zylinder	
11. Affine Transformationen der Ebene	Vortrag, Diskussion, Beweis
(Drehung, Verschiebung, Scherung,	
Skalierung, Spiegelung)	
12. Affine Transformationen der Ebene in	Vortrag, Diskussion, Beweis
homogenen Koordinaten	
13. Affine Transformationen im 3-	Vortrag, Diskussion, Beweis
dimensionalen Raum	
14. Affine 3-D Transformationen mit Hilfe	Vortrag, Diskussion, Beweis
homogener Koordinaten	

Literatur

- 1. D.Andrica, L. Topan Analytic Geometry, Cluj University Press, 2004
- 2. G. Baer Geometrie, Springer, 2001
- 3. E.Brieskorn Lineare Algebra und analytische Geometrie, Band 1, Band 2, 1983, 1985.
- 4. G.Farin, D.Hansford Lineare Algebra. Ein geometrischer Zugang, Springer, 2002.
- 5. M.Koecher Lineare Algebra und analytische Geometrie, 4. Auflage, Springer 2003.
- 6. B. Pareigis Analytische und projektive Geometrie für die Computergraphik, Teubner, 1990.

8.2 Seminar / Übung	Lehr- und Lernmethode	Anmerkungen
Aufgaben zur Vektoralgebra	Beispiele, Diskussionen	
2. Aufgaben zum Skalarprodukt	Beispiele, Diskussionen	
3. Aufgaben zum Vektorprodukt,	Beispiele, Diskussionen	
Spatprodukt		
4. Aufgaben zur Gerade in der Ebene	Beispiele, Diskussionen	
5. Aufgaben zur Ebene und Gerade im	Beispiele, Diskussionen	
Raum		
6. Aufgaben zu Winkel, Abstände von	Beispiele, Diskussionen	
Geraden und Ebenen im Raum		
7. Aufgaben zum Kreis, Ellipse	Beispiele, Diskussionen	
8. Aufgaben zur Hyperbel, Parabel	Beispiele, Diskussionen	
9. Aufgaben zum Ellipsoid, einschaliges	Beispiele, Diskussionen	
und zweischaliges Hyperboloid		
10. Aufgaben zum elliptischen und	Beispiele, Diskussionen	
hyperbolischen Paraboloid, Kegel und		
Zylinder		
11. Aufgaben zu affinen 2-D	Beispiele, Diskussionen	
Transformationen		
12. Aufgaben zu affinen 2-D	Beispiele, Diskussionen	
Transformationen in homogenen		
Koordinaten		
13. Aufgaben zu affinen 3-D	Beispiele, Diskussionen	
Transformationen		
14. Aufgaben zu affinen 3-D	Beispiele, Diskussionen	
Transformationen in homogenen		
Koordinaten		
Literatur		

- Cezar Coșniță ș.a. Culegere de probleme de geometrie analitică, Editura didactică și pedagogică, 1963
- 2. C. Ionescu-Bujor, O. Sacter Exerciții și probleme de geometrie analitică și diferențială, volumul I, Editura didactică și pedagogică, 1963
- 3. F. Rado ş.a. Culegere de probleme de geometrie, Lito UBB, 1979
- 4. Ion D. Teodorescu Geometrie analitică și elemente de algebră liniară, culegere de probleme (ediția a II-a), Editura didactică și pedagogică, 1971
- 5. Alfred Wittig Vektoren in der analytischen Geometrie, Vieweg Teubner Verlag, 1968.
- 6. Alfred Wittig Einführung in die Vektorrechnung, Vieweg Teubner, 1968.

9. Verbindung der Inhalte mit den Erwartungen der Wissensgemeinschaft, der Berufsverbände und der für den Fachbereich repräsentativen Arbeitgeber

• Die in dieser Vorlesung erworbenen Kenntnisse erweisen sich als nützlich als Grundlagen in jeder mit Computergrafik verknüften Aktivität.

10. Prüfungsform

10. I Turungstorm			
Veranstaltungsart	10.1 Evaluationskriterien	10.2 Evaluationsmethoden	10.3 Anteil an der
			Gesamtnote
10.4 Vorlesung	Kenntnisstand in Bezug	Zwei schriftliche	90%
	auf den Lernstoff der	Kontrollarbeiten, Mitte und	
	Vorlesung, die Fertigkeit,	Ende des Semesters	
	mit dem Lernstoff		
	umzugehen		
10.5 Seminar / Übung	Anwesenheit, aktive	Diskussion, Aufgabenlösen,	10%
_	Mitarbeit, richtiges Lösen	Selbststudium,	
	der Hausaufgaben	Gruppenarbeit	

10.6 Minimale Leistungsstandards

- Die Anwesenheit bei den Übungsstunden ist für die Zulassung an den Kontrollarbeiten erforderlich.
- Für das Vergeben der Leistungspunkte muss bei jeder Kontrollarbeit die Mindestnote 5 erziehlt werden.

Ausgefüllt am: Vorlesungsverantwortlicher Seminarverantwortlicher

29. April 2024 Lektor Dr. Veronica Nechita Lektor Dr. Veronica Nechita

Genehmigt im Department am: Departmentdirektor

29. April 2024 Prof. Dr. Andrei Mărcuș