

SYLLABUS

1. Information regarding the programme
1.1 Higher education
institution

Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science
1.3 Department Department of Computer Science
1.4 Field of study Computer Science
1.5 Study cycle Bachelor

1.6 Study programme /
Qualification

Computer Science

2. Information regarding the discipline
2.1 Name of the discipline (en)
(ro)

Design Patterns

2.2 Course coordinator Assoc. Prof. PhD. Arthur Molnar
2.3 Seminar coordinator Assoc. Prof. PhD. Arthur Molnar

2.4. Year of study 3 2.5 Semester 6 2.6. Type of evaluation C 2.7 Type of discipline Opt

2.8 Code of the discipline MLE8115

3. Total estimated time (hours/semester of didactic activities)
3.1 Hours per week 5 Of which: 3.2 course 2 3.3

seminar/laboratory
1 L +
2 PR

3.4 Total hours in the curriculum 60 Of which: 3.5 course 24 3.6
seminar/laboratory

36

Time allotment: hours
Learning using manual, course support, bibliography, course notes 15
Additional documentation (in libraries, on electronic platforms, field documentation) 15
Preparation for seminars/labs, homework, papers, portfolios and essays 15
Tutorship 15
Evaluations 5
Other activities: -
3.7 Total individual study hours 65
3.8 Total hours per semester 125
3.9 Number of ECTS credits 5

4. Prerequisites (if necessary)
4.1. curriculum • Fundamentals of Programming

• Object Oriented Programming
4.2. competencies • Good programming skills in Java or C#

5. Conditions (if necessary)

6. Specific competencies acquired

Pr
of

es
si

on
al

 c
om

pe
te

nc
ie

s

C1.1 Description of programming paradigms and of language specific mechanisms, as well as
identification of syntactic and semantic differences.
C1.2 Explanation of existing software applications, on different levels of abstraction (architecture,
classes, methods) using adequate basic knowledge.
C1.3 Elaboration of adequate source code and testing of components in a given programming
language, based on given specifications.
C2.1 Identify adequate methodologies to develop software systems
C2.3 Use methodologies, specification and IDEs to develop software systems
C2.5 Implement dedicated software systems
C4.3 Identify models and methods to solve real-life problems

T
ra

ns
ve

rs
al

co

m
pe

te
nc

ie
s

CT1 Application of efficient and rigorous working rules, manifest responsible attitudes towards
the scientific and didactic fields, respecting professional and ethical principles.
CT3 Use of efficient methods and techniques for learning, information, research and development
of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for
communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content
8.1 Course Teaching methods Remarks

1. OOP Principles Recap: Cover main OOP
principles such as encapsulation,

description,
explanation, -

5.1. for the course • Lecture hall with projector
5.2. for the seminar /lab
activities

• Computers with installed IDE for Java/C# development

7.1 General objective of the
discipline

• Enhance students’ understanding of software design concepts through
a pragmatic approach.

• Provide students with an environment in which they can explore the
usage and usefulness of software design concepts in various business
scenarios.

• Induce a realistic and industry driven view of software design concepts
such as design patterns and their inherent benefits

7.2 Specific objective of the
discipline

• Give students the ability to explore various object-oriented
programming languages.

• Improve the students' abilities to tackle business requirements.
• Enhance the students' understanding of business needs and business

value.
• Provide students with insights into the way of working towards

achieving high quality software.

polymorphism, cohesion, coupling,
aggregation, composition using well known
languages (Python, C++, Java, C#, etc.)

example,
case studies,

dialogue,
debate 2. SOLID principles: base principles of high-

quality software: Single responsibility, Open-
closed, Liskov substitution, Interface
segregation and Dependency inversion

3. Creational Patterns (Factory, Builder,
Prototype, Singleton)

4. Structural Patterns (Adapter, Bridge,
Composite)

5. Structural Patterns (Decorator, Facade,
Flyweight, Proxy)

6. Behavioural Patterns (Chain of Responsibility,
Command, Iterator)

7. Behavioural Patterns (Mediator, Memento,
Observer)

8. Behavioural Patterns (State, Strategy,
Template, Visitor)

9. Antipatterns, Dark Patterns in the UX
10. Architectural Patterns (MVVM, MVP, MVC)
11. Enterprise Integration Patterns (selection)
12. Examination

Bibliography
1. M. Fowler – Patterns of Enterprise Application Architecture, Aison Wesley, 2003
2.E. Freeman, E. Freeman, B. Bates – Head First Design Patterns, Oreilly, 2004
3. E. Gamma, R. Helm, R.Johnson, J. Vlissides – Design Patterns Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995
4. Gregor Hohpe, Bobby Woolf - Enterprise Integration Patterns, Addison Wesley, 2003.

8.2 Seminar / laboratory Teaching methods Remarks
1. Introduction. OOP recap. Advanced UML

elements.
Explanation,

dialogue,
case

studies

-

2. SOLID principles
3. Creational Design Patterns
4. Structural Design Patterns
5. Behavioural Design Patterns
6. Antipatterns, Architectural Patterns
7. Final project turn-in

Bibliography
1. M. Fowler – Patterns of Enterprise Application Architecture, Aison Wesley, 2003
2.E. Freeman, E. Freeman, B. Bates – Head First Design Patterns, Oreilly, 2004
3. E. Gamma, R. Helm, R.Johnson, J. Vlissides – Design Patterns Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995
4. Gregor Hohpe, Bobby Woolf - Enterprise Integration Patterns, Addison Wesley, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community,
professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies.
• The course exists in the studying program of all major universities in Romania and abroad.
• The content of the course is considered important within the software industry for acquiring advanced

programming skills.

10. Evaluation
Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)
10.4 Lecture

Team presentations during
the semester.

Technical quality,
thoroughness of
presentation.

25%

10.4 Lecture

Oral examination in the
form of design pattern
exemplification in open-
source software.

Level of technical
complexity and suitability
of the presented pattern
examples.

50%

10.5 Seminar/lab
activities

Final project: design
pattern application.

Number and variety of
implemented patterns,
technical quality, and
presentation.

25%

10.6 Minimum performance standards
Ø Students must observe the standards of academic integrity.
Ø Students must show good understanding of traditional and architectural design patterns, be able to

identify them in complex, real-world applications and identify when their application can result in
tangible improvements to software quality.

Ø A minimum passing grade is defined by attaining at least 50% (5/10) points from the total
represented in the table above.

Date Signature of course coordinator Signature of seminar coordinator

 Assoc. Prof. PhD. Arthur Molnar Assoc. Prof. PhD. Arthur Molnar

 Signature of the head of department

 Assoc. Prof. PhD. Adrian Sterca

