syllabus

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en) (ro)			Artificial Intelligence Inteligență Artificială				
2.2 Course coordinator			L	Lecturer, PhD Mihoc Tudor Dan			
2.3 Seminar coordinator			L	Lecturer, PhD Mihoc Tudor Dan			
2.4. Year of study	2	2.5 Semester	4 2.6. Type of evaluation E 2.7 Type of discipline			0	
2.8 Code of the discipline		Ml	LE5029		•		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 courses	2	3.3 seminar/laboratory	2 lab	
3.4 Total hours in the curriculum	56	Of which: 3.5 courses	28	3.6 seminar/laboratory	28	
Time allotment:	Time allotment:					
Learning using manual, course support, bibliography, course notes					28	
Additional documentation (in libraries, on electronic platforms, field documentation)					14	
Preparation for seminars/labs, homework, papers, portfolios and essays					28	
Tutorship						
Evaluations					20	
Other activities:						
3.7 Total individual study hours		94				
3.8 Total hours per semester 150						
3.9 Number of ECTS credits		6				

4. Prerequisites (if necessary)

4.1. curriculum	Graph Theory, Data Structures and Algorithms
4.2. competencies	Average programming skills in a high-level
	programming language

5. Conditions (if necessary)

5.1. for the course	projector
5.2. for the seminar or	Laboratory with computers; high-level programming
lab activities	language environment

6. Specific competencies acquired

6. Specific	ific competencies acquired						
Professio nal com	CE1.1	To describe the concepts and the research directions in Artificial intelligence,					
petencies	CE1.2	To assess the quality and stability of the obtained solutions and to compare them with solutions obtained by traditional methods.					
	CE1.3	To use methods, techniques, and algorithms from AI in order to model several classes of problems.					
	CE1.4	To identify and explain specific AI techniques and algorithms and use them to solve specific problems.					
	CE1.5	To integrate models and specific AI solutions in dedicated applications.					
Transver	CT1	To apply the rules for organized and efficient work.					
sal							
competen cies	СТ2	To promote a responsible attitude towards the educational - scientific domain in order to use the creative potential.					
	СТЗ	To respect the principles and norms of professional etiquette.					
	СТ4	To use efficient learning methods and techniques for learning, documenting, and searching.					
	СТ5	To develop the capacity to use knowledge, adapt at the requests of a dynamic society, and properly communicate.					

7. Objectives of the discipline (outcome of the acquired competencies)

_	7. Objectives of the discipline (outcome of the dequired competencies)				
	7.1 General objective	Ability to understand and use the basic AI algorithms and			
ı	of the discipline	principles.			
ı		Ability to model real-life problems as AI problems and find			
l		optimal solutions to them			
I	7.2 Specific	Acquire knowledge about the main classes of soft computing			
l	objectives of the	algorithms, the basic notions of game theory, and knowledge			
ı	discipline	base reasoning.			

8. Content

8.	Content		
8.1	Course	Teaching methods	Remarks
1. 2. 3.	Introduction to AI: History, Method, and Ethical Issues Mathematical prerequisites. Data preprocessing. Machine learning and decision trees Neural networks I: Perceptron model, feed-forward neural networks Neural networks II: Multi-Layer layer	Exposure: description, explanation, examples, case studies, discussion	
5.	neural networks, Backpropagation Algorithm Types of ANNs I: CNNs, RNNs, LSTM, GRU, Transformers, and BERT	• discussion	
6.	Types of ANNs II: GPT Series, Siamese Networks, CapsNets, Autoencoders, GANs, Attention-Based Models, GNNs, Neural Style Transfer Networks, and Neuroevolution		
7.	Intelligent Systems: Support Vector Machines, K mean		
8.	Knowledge representation and reasoning in rule-based systems: Uncertainty management in rule-based systems		
9.	Problem solving as search: Problem spaces, Uninformed search, BFS, DFS, Limited DFS, Iterative deepening search, UCS		
10.	Problem solving as search: Informed search, Heuristic search, Best-first search, Greedy, A* algorithm, A* variants		
11.	Local search: Simulated annealing, Hill climbing Evolutionary computation: Evolutionary algorithms		
12.	Evolutionary Computation: Evolutionary strategies, Evolutionary programming, and Genetic programming		
	Swarm intelligence: Particle swarm optimization, Ant colony optimization		
14.	Adversarial Searching: Game playing, Minimax search, Alpha-beta pruning		

Bibliography:

- Goldberg, D. E., Genetic Algorithms, Addison-Wesley, Reading, 1989.
- Russell, S., J., and Norvig, P., *Artificial Intelligence: A Modern Approach*, N.J., Prentice Hall/Pearson Education, 2003.
- Zaki, Mohammed J., and Wagner Meira Jr., *Data mining and machine learning fundamental concepts and algorithms*, Cambridge University Press, 2020.
- Géron, Aurélien, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly Media, Inc., 2022.

8.2	Laboratory/Seminars	Teaching methods	Remarks
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Get familiar with Scipy, Matplotlib, and other packages. Perform data preprocessing. Monte Carlo Methods: simulation, sampling, and biases Build a DT for a specific problem. Validate the results. Get familiar with pytorch. Build a simple ANN for a specific problem. Select, modify, and visualize specific network parameters. Build a CNN for image recognition. Build a prediction system based on a time series Implement a clustering algorithm and apply it to a specific problem Perform transfer learning on a large language model Model a problem for a DFS approach Implement an evolutionary algorithm and apply it on a specific problem Implement a PSO for a mathematical	 Examples Case Studies Dialogue Exercises Small student projects 	Evaluation: • Quiz • Presentation
	problem Memetic Algorithms		

Bibliography:

- Goldberg, D. E., *Genetic Algorithms*, Addison-Wesley, Reading, 1989.
- Russell, S., J., and Norvig, P., *Artificial Intelligence: A Modern Approach*, N.J. Prentice Hall/Pearson Education, 2003.
- Zaki, Mohammed J., and Wagner Meira Jr., Data mining and machine learning: fundamental concepts and algorithms, Cambridge University Press, 2020.
- Géron, Aurélien, *Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow*, O'Reilly Media, Inc., 2022.

9. Correlating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course follows the scheme and structure used by the most important universities in the USA and Europe.

The course exists in the study programs of all major universities in Romania and abroad.

10. Evaluation

True of activity	10.1 Explanation onitonia	10.2 Explanation	10.2 Chamain
Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in
		methods	the grade (%)
10.4 Course	How well do students know the basic principles of the AI domain? How well can they apply the course concepts to solve real problems?	Written exam	60%
10.5 Seminar/lab activities	How well are students able to implement the presented methods and algorithms in laboratories?	Laboratory / seminar assignments	40%

10.6 Minimum performance standards

All seminar and laboratory classes are mandatory. Minimum attendance requirements in order to pass are 75% in seminars and 90% in laboratories.

At least **grade 5** (from a scale of 1 to 10) at the final mark is required in order to pass.

Date	Lecturer Phd. Tudor Dan Mihoc	Lecturer, Phd. Tudor Dan Mihoc
Date of approval		Signature of the head of department