SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Undergraduate
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Metode Avansate de Programare							
Advanced Programming Methods							
2.2 Course coo	2.2 Course coordinator Assoc. Prof. Eng. Florin Craciun						
2.3 Seminar coordinator				Assoc. Prof. Eng	Florin	n Craciun	
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

		<u> </u>		*	
3.1 Hours per week	6	Of which: 3.2	2	3.3	2 sem. +
		course		seminar/laboratory	2 lab.
3.4 Total hours in the curriculum	84	Of which: 3.5	28	3.6	28 sem
		course		seminar/laboratory	+ 28 lab
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					26
Tutorship					5
Evaluations					5
Other activities:				-	
					*

3.7 Total individual study hours	66
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	•	Object oriented programming, Algorithmics, Data structures
4.2. competencies	•	Basic notions and programming skills

5. Conditions (if necessary)

5.1. for the course	projector
5.2. for the seminar /lab activities	projector

6. Specific competencies acquired

Professional competencies	 Knowledge, understanding and use of basic concepts of object-oriented analysis and design. Ability to work independently and/or in a team in order to solve problems in defined professional contexts. Good programming skills in object-oriented languages especially in Java
Transversal competencies	 Ability to apply design patterns in different contexts Ability to build software projects by following the main phases in software applications development. Ability to create projects with clear separations on architectural layers, based on different architectural patterns.

7. Objectives of the discipline (outcome of the acquired competencies)

. Objectives of the discipline (outcome of the acquired competencies)					
7.1 General objective of the	• E	ach student has to prove that (s)he acquired an acceptable			
discipline	16	level ofknowledge and understanding of the subject, that			
	(:	(s)he is capable of stating these knowledge in a coherent			
	f	form, that (s)he has correct habits of analysis, design, and			
	iı	implementation based on design patterns and general object			
	oriented paradigms				
7.2 Specific objective of	• T	he students should have the ability to use Java language,			
the discipline	d	esign patterns, and to create GUI for their applications. Also			
	tl	ney have to be able to use object-oriented concepts in			
	p	rogram analysis and design.			

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Java platform: platform,	Exposure, description,	
language syntax, primitive data types,	explanation, debate	
arrays, classes, interfaces, packages,	and dialogue,	
enums, overriding, overloading,	discussion of case	
exceptions	studies	
2. Collections and Generic Types: anonymous	Exposure, description,	
classes, polymorphism, casting	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
3. IO,NIO: binary and character oriented	Exposure, description,	
streams, files, channels and buffers	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
4. Functional programming: lambda expressions,	Exposure, description,	
streams	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	

5. GUI: Java FX components, event handling	Exposure, description, explanation, discussion of case studies
6. Concurrency: threads, executors, futures, exception handling	Exposure, description, explanation, discussion of case studies
7. Concurrency: sync vs async methods, callback methods, cancellation	Exposure, description, explanation, debate and dialogue, discussion of case studies
8. XML: schema, documents	Exposure, description, explanation, debate and dialogue, discussion of case studies
9. GUI (cont.):FXML, CSS. Metaprogramming: reflection, serialization	Exposure, description, explanation, discussion of case studies
10. Introduction in C# and .Net	Exposure, description, explanation, discussion of case studies
11. Collections in C#	Exposure, description, explanation, discussion of case studies
12. IO operations in C#	Exposure, description, explanation, discussion of case studies
13. GUI in C#	Exposure, description, explanation, discussion of case studies
14. LINQ	Exposure, description, explanation, discussion of case studies

Bibliography

- 1. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley. The Java™ Language Specification Java SE 7 Edition.
- 2. Eckel, B., Thinking in Java, 4th edition, Prentice Hall, 2006
- 3. Eckel, B.: Thinking in Patterns with Java, 2004. MindView, Inc
- 4. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns Elements of Reusable Object Oriented Software, Ed. Addison Wesley, 1994
- 5. ***, The Java Tutorial, 2013. http://download.oracle.com/javase/tutorial/
- 6. Joseph Albahari and Ben Albahari, C# 4.0 in a Nutshell, Fourth Edition, O'Reilley, 2010

7. ***, Microsoft Developer Network, Microsof	t Inc.,
---	---------

Bibliography

- 1. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley. The Java™ Language Specification Java SE 7 Edition.
- 2. Eckel, B., Thinking in Java, 4th edition, Prentice Hall, 2006
- 3. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns Elements of Reusable Object Oriented Software, Ed. Addison Wesley, 1994
- 4. Joseph Albahari and Ben Albahari, C# 4.0 in a Nutshell, Fourth Edition, O'Reilley, 2010
- 5. ***, Microsoft Developer Network, Microsoft Inc., http://msdn.microsoft.com/
- 6. ***, The Java Tutorial, 2013. http://download.oracle.com/javase/tutorial/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The content of the course is considered by the software companies as important for average software development skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in
			the grade (%)
10.4 Course	- know the basic principle of	Written final exam	25%
	the domain;		
	- apply the course concepts	Practical final exam	35%
	- problem solving		

10.5 Seminar/lab	- be able to use course	Laboratories Assignments	35%
activities	concepts in solving the real problems	Seminar Activity	5%

10.6 Minimum performance standards

- At least grade 5 (from a scale of 1 to 10) at written final exam and practical final exam. At least grade 5 for the final grade.
- Rules:
- You can change your subgroup for the lab only once at the first lab. You have to announce the lab teacher about this. After the first lab you cannot change your subgroup lab time.
- > you have to present each lab assignment at its deadline
- > for each lab assignment you will get a grade between 1 to 10
- > the deadline for each lab assignment is clearly specified in the assignment text
- > if you delay an assignment 1 week you can get maximum 7 on that assignment
- if you delay an assignment more than 1 week you will automatically get the grade 0 for it and you cannot submit it anymore
- the final grade for the lab activity is the arithmetic average of the lab assignments grades
- you have to implement all the assignments since the problems of the final practical exam are extensions of the lab assignments
- the lab assignments mainly consist of a big project to implement an interpreter (virtual machine) of an imperative concurrent toy language
- at each lab assignment (almost each week) you will add the rules and the data structures required to execute one or more new instructions of the toy language
- > the toy language interpreter will be implemented in Java

- a schedule of the lab assignments (periodically updated) can be found at LabAssignmentsSchedule.pdf
- The first condition to get into the final exam is to attend minimum 90% of the labs and minimum 70% of the seminars. That means you must attend minimum 10 seminars and minimum 12 laboratories. Please read the following document:
- http://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-15.03.2017.pdf
- > Holydays and first week are considered by default attended
- > The second condition to get into the final exam is to get minimum grade 5 at the lab activity.
- Rules for the Students from previous years ("Restantieri"): the students must attend the labs and the seminars, must do the lab assignments, and must pass the final exam
- > in order to pass the final exam you must have:
 - -- at least 5 at the final theoretical exam and
- -- at least 5 at the final practical exam and
 - -- the final grade must be at least 5
- you can pass either both the final theoretical exam and the final practical exam or nothing
- Rules for the second exam ("restanta"): The first condition to get into the final exam is to attend minimum 90% of the labs and minimum 70% of the seminars. That means you must attend minimum 10 seminars and minimum 12 laboratories. Please read the following document:

http://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-15.03.2017.pdf

Holydays and 2 October are considered by default attended

The second condition to get into the final exam is to get minimum grade 5 at the lab activity.

in order to pass the final second exam you must have:

- --- at least 5 at the final theoretical exam and
- --- at least 5 at the final practical exam and

--- the final grade is 5

- you can pass either both the second final theoretical exam and the second final practical exam or nothing

Date	Signature of course coordinator	Signature of seminar coordinator
	Assoc. Prof. PhD. Florin CRACIUN	Assoc. Prof. PhD. Florin CRACIUN
Date of appro	val	Signature of the head of department
		••••••