SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science

2. Information regarding the discipline

2.1 Name of the	di	scipline		Algebra				
2.2 Course coordinator			Prof.PhD. Septimiu Crivei					
2.3 Seminar coo	ordi	nator		Prof.PhD. Septimiu (Crive	i		
2.4. Year of	1	2.5	1	2.6. Type of	VP	2.7 Type of	DC	
study		Semester		evaluation		discipline		
2.8 Course code	e	MLE00	20					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per we	eek	4	Of which: 3.2 course	2	3.3	2
					seminar/laboratory	
3.4 Total hours i	n the curriculum	56	Of which: 3.5 course	28	3.6	28
					seminar/laboratory	
Time allotment:						hours
Learning using r	nanual, course suppor	t, bib	oliography, course notes	S		28
Additional docu	mentation (in libraries	, on	electronic platforms, fie	eld doo	cumentation)	14
Preparation for seminars/labs, homework, papers, portfolios and essays						28
Tutorship						10
Evaluations						14
Other activities:						0
3.7 Total individ	3.7 Total individual study hours 94					
3.8 Total hours 150						
per semester						
3.9 Number of 6						
ECTS credits						

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab activities	

6. Specific competencies acquired

Se	☐ C3.1 Description of concepts, theories and models used in the application field
Professional competencies	☐ C4.3 Identification of adequate models and methods for solving real problems
Š	□ CT2 Efficient fulfillment of organized activities in an inter-disciplinary group and
Fransversal competencies	development of empathic abilities of inter-personal communication, relationship and
Fransversa competenci	collaboration with various groups
ans npo	
Tr: cor	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	☐ To introduce the basic notions of linear algebra as well as some
discipline	of its applications to computer science
7.2 Specific objective of the	☐ To present some applications of linear algebra to computer
discipline	science

8. Content

8.1 Course		Teaching methods	Remarks
1.	Functions. Equivalence relations and	interactive exposure, explanation,	
	partitions	didactical demonstration	
2.	Binary operations. Groups, subgroups, group	interactive exposure, explanation,	
	homomorphisms	didactical demonstration	
3.	Rings and fields, subrings and subfields, ring	interactive exposure, explanation,	
	homomorphisms	didactical demonstration	
4.	Vector spaces, examples. Subspaces. Linear	interactive exposure, explanation,	
	maps	didactical demonstration	
5.	Linear dependence and independence. Bases,	interactive exposure, explanation,	
	dimension. Steinitz theorem	didactical demonstration	
6.	Bases and coordinates. Dimension related	interactive exposure, explanation,	
	formulas	didactical demonstration	
7.	Elementary operations. Matrices and	interactive exposure, explanation,	
	determinants	didactical demonstration	
8.	Rank and inverse of a matrix. Matrix of a list	interactive exposure, explanation,	
	of vectors	didactical demonstration	
9.	Matrix of a linear map. Change of basis	interactive exposure, explanation,	
		didactical demonstration	
10.	Systems of linear equations, solving methods	interactive exposure, explanation,	
		didactical demonstration	
11.	Eigenvectors and eigenvalues	interactive exposure, explanation,	
		didactical demonstration	
12.	Linear codes, examples. Generator matrix	interactive exposure, conversation	
	and parity-check matrix		
13.	Decoding linear codes	interactive exposure, conversation	

14. Applications of Algebra to Computer Science | interactive exposure, conversation Bibliography 1. G. Calugareanu, Lectii de algebra liniara, Lito UBB, Cluj-Napoca, 1995. 2. S. Crivei, Basic linear algebra, Cluj University Press, Cluj-Napoca, 2022. 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005. 4. J. Gilbert, L. Gilbert, Elements of modern algebra, PWS-Kent, Boston, 1992. 5. W. J. Gilbert, W. K. Nicholson, Modern Algebra with Applications, John Wiley, 2004. 6. P. N. Klein, Coding the Matrix. Linear Algebra through Applications to Computer Science, Newtonian Press, 2013. 8.2 Seminar / laboratory Teaching methods Remarks 1. Functions. Equivalence relations and interactive exposure, conversation partitions 2. Binary operations. Groups, subgroups, group interactive exposure, conversation homomorphisms 3. Rings and fields, subrings and subfields, ring interactive exposure, conversation homomorphisms 4. Vector spaces, examples. Subspaces. Linear interactive exposure, conversation maps 5. Linear dependence and independence. Bases, interactive exposure, conversation dimension. Steinitz theorem 6. Bases and coordinates. Dimension related interactive exposure, conversation formulas 7. Elementary operations. Matrices and interactive exposure, conversation determinants 8. Rank and inverse of a matrix. Matrix of a list interactive exposure, conversation of vectors 9. Matrix of a linear map. Change of basis interactive exposure, conversation 10. Systems of linear equations, solving methods interactive exposure, conversation 11. Eigenvectors and eigenvalues interactive exposure, conversation 12. Linear codes, examples. Generator matrix interactive exposure, conversation and parity-check matrix 13. Decoding linear codes interactive exposure, conversation 14. Applications of Algebra to Computer Science interactive exposure, conversation

Bibliography

- 1. S. Crivei, Basic linear algebra, Cluj University Press, Cluj-Napoca, 2022.
- 2. W. J. Gilbert, W. K. Nicholson, Modern Algebra with Applications, John Wiley, 2004.
- 3. P. N. Klein, Coding the Matrix. Linear Algebra through Applications to Computer Science, Newtonian Press, 2013.
- 4. I. Purdea, C. Pelea, Probleme de algebra, Editura EIKON, Cluj-Napoca, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

☐ The contents is directed towards applications of linear algebra to computer science.	
--	--

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	Knowledge of basic concepts, examples	Exam	25	
10.5 Seminar/lab	Problem solving	Exam, assessments	75	
10.6 Minimum performance standards				
☐ Grade 5				

Date	Signature of course coordinator	Signature of seminar coordinator
26.04.2024	Prof. PhD. Septimiu CRIVEI	Prof. PhD. Septimiu CRIVEI

Date of approval Signature of the head of department

Prof.PhD. Andrei MARCUS