SYLLABUS

	r
1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor of Science
1.6 Study programme /	Artificial Intelligence
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)		Int	Introduction to Big Data				
(ro)							
2.2 Course coordinator		Lee	Lect. Dr. Ioana-Georgiana Ciuciu				
2.3 Seminar coordinator		Leo	Lect. Dr. Ioana-Georgiana Ciuciu				
2.4. Year of study	2	2.5 Semester	4	2.6. Type of	С	2.7 Type of	Compulsory
	evaluation discipline						
2.8 Code of theMLE5203							
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	14/14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bit	liography, course notes	S		24
Additional documentation (in libraries	, on	electronic platforms, fie	eld do	cumentation)	24
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					
Evaluations					
Other activities:					
3.7 Total individual study hours94					
3.8 Total hours per semester150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	Basic knowledge of data analytics, preferably

٠	Basic knowledge of data visualization, preferably
•	Programming skills

5. Conditions (if necessary)

5.1. for the course	•	Room with video projector
5.2. for the seminar /lab	•	Room with computers as needed;
activities	•	Big Data software installed
	•	High level programming language environment

6. Specific competencies acquired Knowledge and understanding

	• Understanding the specificities of Big Data
	• Knowing the main Big Data sources and the main methods to store and process these data
	• Understanding the role of Big Data analysis in various domains
ies	Explanation and interpretation
etenci	• Explaining decisions using complex models based on Big Data
compe	• Interpreting the results of the Big Data analysis
onal (Instrumental - applicative
ofessio	• Using non-traditional databases for the storage and processing of large volumes of data
Pro	Advanced querying over distributed information resources
	• Evaluation, testing and validation with real-world data
	Attitude
	• Manifesting an open attitude towards the contributions of Big Data and the underlying technologies in a multitude of domains
	• Methods and algorithms for data processing and analysis applied to Big Data
Transversal competencies	• Multidisciplinary competencies spanning various application sectors (e.g., life sciences and bioinformatics, telco, media, finance, security, health, energy, etc.)
	• Data Science competencies, combining data analyst and data engineer- specific competencies (e.g., competencies from the fields of mathematics, statistics, information science, computer science, databases, machine learning, data mining, visualization, etc.)

7.1 General objective of the discipline	• Handling (extremely) large amounts of digital data in various formats (text, video, financial, medical, etc.)
7.2 Specific objective of the discipline	 Enable the use of novel algorithms, software infrastructures and methodologies for the purpose of processing (store, retrieve, analyze) large amounts of data Provide decision support over large volumes of data Enable the creation of applications and services for various business domains based on the results of big data analysis.

8. Content

8.1 Cc	ourse	Teaching methods	Remarks
1.	Introduction to Data Science and Big Data – part I	Exposure, description, explanation, examples, case studies	Data Science main concepts, the Data Science Process, examples, case studies
2.	Introduction to Data Science and Big Data – part II	Exposure, description, explanation, examples, case studies	Data types, data sources, data availability, main Big Data concepts, Big Data emerging technologies, case study examples
3.	Industrial Standards for Data Mining Projects	Exposure, description, explanation, examples, case studies	Methodology for Data Science projects (CRISP-DM)
4.	Big Data Architecture	Exposure, description, explanation, examples, case studies	Traditional database systems versus Big Data systems The Lambda Architecture - a model for building a Big Data system, case studies and examples
5. 6.	Batch processing (Batch Layer) - part I Batch processing (Batch Layer) - part II	Exposure, description, explanation, examples, case studies	Big Data storage, data model for Big Data, batch computing, the Hadoop Ecosystem, Batch processing, technologies
7.	Serving Layer	Exposure, description, explanation, examples, case studies	Requirements, performance metrics, the normalization/denormalization problem, tools
8.	Speed processing (Speed Layer)	Exposure, description, explanation, examples, case studies	Computing and storing of real time views, real time updates, tools
9.	Data Ingestion	Exposure, description, explanation, examples, case studies	Definitions and design considerations, batch ingestion, real time ingestion, tools

10. NoSQL Solutions for Big Data	Exposure, description, explanation, examples, case studies	NoSQL databases, NoSQL Data Models Tutorial provided
11. Data Visualization	Exposure, description, explanation, examples, case studies	Scientific data visualization principles, examples, technologies
12. Big Data Case Studies	Exposure, description, explanation, examples, case studies	Presentation of Big Data (industrial) case studies
13. Ethical Challenges Related to Big Data and AI	Exposure, description, explanation, examples, case studies	Challenges in developing and using big data applications and AI models, including (i) security and privacy of data; (ii) algorithmic bias and fairness; (iii) transparency and; and (iv) social and ethical implications
14. Big Data Research Essays Presentation	Exposure, description, explanation, examples, case studies	Student essay presentation

Bibliography

Marz, N., & Warren, J. (2015). *Big Data. Principles and Best Practices of scalable real-time systems*. Manning Publications

Cielen, D., Meysman, A.D.B., & Ali, M. (2016). *Introducing Data Science. Big Data, machine learning, and more, using Python tools*. Manning Publications

Grus, J. (2019). Data Science from Scratch: First Principles with Python. O'Reilly Media, Inc.

Damji, J.S., Wenig, B., Das, T., & Lee, D. (2020). Learning Spark. O'Reilly Media, Inc.

Zečević, P., Bonaći, M. (2017). Spark in Action, Manning Publications

Perrin, J.G. (2020). Spark in Action, 2nd Ed., Manning Publications

Zelenin, A., Kropp, A. (2025). Apache Kafka in Action, Manning Publications

Sadalage, P., Fowler, M. (2013). *NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence*. Pearson Education, Inc.

Banker, K., Bakkum, P., Verch, S., Garrett, D. and Hawkins, T. (2016). *MongoDB in Action*, Second Edition, Manning Publications

Borucki, A. (2024). MongoDB in Action, 3rd Ed., Manning Publications

Agneeswaran, V. (2014). Big Data Analytics Beyond Hadoop. Pearson Education

White, T. (2009). Hadoop: The Definitive Guide. O'Reilly

Holmes, A. (2015). *Hadoop in Practice*, 2nd ed., Manning Publications

McCallum, Q. E. (2012). *Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work*. O'Reilly

Grigorev, A. (2021). Machine Learning Bookcamp, Manning Publications

Rioux, J. (2022). Data Analysis with Python and PySpark, Manning Publications

Khalil, M. (2025). Effective Data Analysis, Manning Publications

8.2 Seminar / laboratory	Teaching methods	Remarks			
Semester project organized with groups of about	Research-informed	Groups will be monitored via			
2-3 students (depending on the requirements	Learning	an MS Team managed with			
and the equipment needed)		the course/lab the responsible			
	Tutorial-based	-			
Team work will be autonomous (focus on		The seminar/lab takes place			
creativity and critical thinking)	Problem-solving	every two weeks and takes			
	approach	two hours			
Technical tutorials will be provided to support					
student work around the most important aspects	Team work				
of Big Data storage and processing (e.g., Hadoop					
shell, PySpark, Data Ingestion with Apache	Big Data solutions for				
Sqoop, NoSQL, etc.)	concrete problems and				
	case studies				
Bibliography (same as for the course)					
1. <u>http://mahout.apache.org/</u>					
2. http://www.tutorialspoint.com/mahout/mahout_introduction.htm					
3. <u>http://spark.apache.org/documentation.html</u>					
4. <u>http://shark.cs.berkeley.edu/</u>					
5. <u>http://spark.apache.org/</u>					
6. <u>http://nosql-database.org/</u>					
7 https://www.mongodb.com/nosal-explained	1				

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Synergies with various local and EU initiatives: local industry, national institutions, European Data Science Academy (EDSA, <u>https://edsa-project.eu/</u>),EU projects such as Big Data for Next Generation Energy (BD4NRG, <u>https://www.bd4nrg.eu/</u>), LETHE (<u>https://cordis.europa.eu/project/id/101017405</u>), FARE (<u>https://cordis.europa.eu/project/id/853566</u>), the Human Brain Project (<u>https://www.humanbrainproject.eu/en/</u>), SoBigData (<u>http://project.sobigdata.eu/</u>), etc.
- Collaboration with the IT industry: invited lectures with real-life use cases, semester project topics, equipment (e.g., smart sensors).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
10.4 Course	 to be familiar with the main concepts of the domain to be able to model a problem from a specific application field relying on emergent Big Data technologies to be able to apply these principles in real-life use 	Evaluation of a research essay	50%
10.5 Seminar/lab activities	 cases to be able to propose viable creative solutions to real-life big data challenges from various application domains to be able to consume (query, analyze)Big Data in order to derive information relevant to use cases from various application domains to demonstrate critical thinking to successfully perform individual and team-based tasks 	Semester project	50%
10.6 Minimum performance	ce standards	1	1
 A minimum grade of research essay and t The lab attendance is Department Council 	5 (on a scale from 1 to 10) is ne the semester project) s compulsory at a rate of 90%, a (http://www.cs.ubbcluj.ro/wp-cor	cessary for the final grade (average according to the decision of the Co atent/uploads/Hotarare-CDI-15.03	ge between the omputer Science .2017.pdf)

DateSignature of course coordinatorSignature of seminar coordinator...23 Feb 2025......Lect. Dr. Ioana-Georgiana CiuciuLect. Dr. Ioana-Georgiana Ciuciu

Date of approval

.....

Signature of the head of department

Conf. Dr. Adrian Sterca