SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Data Science for Industry and Society
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Intelligent Tools for Social Good					
(ro)		Instrumente inteligente pentru bunăstare socială					
2.2 Course coordinator		P	Prof. Dr. Dioşan Laura				
2.3 Seminar coordinator		Prof. Dr. Dioșan Laura					
2.4. Year of study	2	2.5 Semester	3 2.6. Type of E 2.7 Type of Option			Optional	
				evaluation		discipline	
2.8 Code of the MMX9902				•	•	·	
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					41
Tutorship					4
Evaluations					4
Other activities:				-	
2777 (11 11 1 1 1 1		122			

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Algorithms, data structures, statistics, Artificial Intelligence
4.2. competencies	 Average programming skills in a high-level language

5. Conditions (if necessary)

5.1. for the course	• Proj	ector
5.2. for the seminar /lab	• For	the lab activity, computers with high processing speed are needed.
activities		

6. Specific competencies acquired

6. Specifi	ic competencies acquired
	CE1.3 Use of Artificial Intelligence methods, techniques and algorithms to model solutions
Professional competencies	to class of problems
essi	CE1.4 Identification and explanation of Artificial Intelligence techniques and algorithms
rof	and their use for solving specific problems
H S	CE1.5 Using models and solutions from Artificial Intelligence in dedicated applications
	CT1. Application of efficient work rules and responsible attitudes towards the scientific
cies	domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics
ten	CT2. Efficient conduct of activities organized in an interdisciplinary group and
npe	development of empathic capacity of interpersonal communication, networking and
C01	collaboration with diverse groups
Transversal competencies	CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The course has the objective of emphasizing the most relevant intelligent solving techniques (such as optimization algorithms, game theory, machine learning, decision support systems) for current social problems from the domains of health, social good, security and privacy, ecological durability and sustainability, etc.
7.2 Specific objective of the discipline	 The course tackles theoretical and practical aspects of Artificial Intelligence. At the end of the course, students will be able to: identify social challenges that can be approached with intelligent algorithms and choose the most appropriate intelligent algorithms describe the intelligent methods presented in the course (including basic concepts, design and implementation of intelligent algorithms) model social challenges as mathematical problems that can be solved with intelligent algorithms and adapt these algorithms to concrete problems describe the evaluation criteria and the methodology of applying intelligent methods to improve social good

8. Content

8.1 Course	Teaching methods	Remarks
- Optimization (Course 1-3)	methods Exposure Conversation Practical examples Case-study discussions	

- mobility and safety)
- health (decision/diagnose systems, control systems, monitoring systems)
- public good (education, economic development, law, public safety)
- Sequential decision processes (Course 10-12)
 - Markov decision processes
 - o recurrent neural networks
 - o examples of problems:
 - eco-system management
 - safety through connectivity
 - smart vehicle connectivity for safety applications
 - ML for 5G
 - sentiment analysis and processing (from text, gestures)
- Computational systems based on cellular automata (Course 13-14)
 - o basic concepts and properties of cellular automata
 - o cellular automata and the philosophy of computational models
 - o examples of problems:
 - modelling of chemical systems
 - modelling of urban growth processes
 - modelling of traffic flow
 - modelling of military strategies

Bibliography

- 1. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 2. T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- 3. D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- 4. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- 5. P. F. Brown, S. Della Pietra, V. J. Della Pietra, and R. L. Mercer. The mathematic of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2):263-311, 1994
- 6. Ilachinski, Andrew, 2001, Cellular Automata, Singapore: World Scientific Publishing.
- 7. Miller, John H. and Scott E. Page, 2007, Complex Adaptive System, Princeton, NJ: Princeton University Press.
- 8. Bradley, Stephen, Arnoldo Hax, and Thomas Magnanti. "Applied mathematical programming." (1977) link
- 9. Nisan, Noam, et al., eds. Algorithmic game theory. Vol. 1. Cambridge: Cambridge University Press, 2007. link
- 10. Christopher, M. Bishop. PATTERN RECOGNITION AND MACHINE LEARNING. Springer-Verlag New York, 2016.
- 11.Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998. link
- 12. Papadimitriou, Christos H., and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity. Courier Corporation, 1998.

8.2 Seminar / laboratory	Teaching	Remarks
	methods	
Development of projects	Conversation	Each lab
oriented toward application	Algorithmics	has a 2
o for example: Intelligent methods to limit deforestation	Discovery	hour
oriented toward intelligent methods	Individual	duration
o for example: Deep artificial neural networks to reduce	study	and takes
pollution	Exercise	place

Phase 1 (week 1 and 2)	
 presentation (by the teaching staff) of types of problems that can be 	
solved using intelligent methods	
 presentation (by the teaching staff) of solving instruments already 	
existing	
Phase 2 (week 3 and 4)	
 selection (by student) of problem and solving instrument 	
discussion about this selection	
Phase 3 (week 5 and 6)	
 methodology for solving a concrete problem (steps to follow) 	
Phase 4 (week 7 and 8)	
selection of testing data	

once every 2 weeks

Phase 5 (week 9 and 10)
solving the proble

• solving the problem using the selected instrument

Phase 6 (week 11 and 12)

• solving the problem using the selected instrument

Phase 7 (week 13 and 14)

project presentation

Bibliography

- 1. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 2. T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- 3. D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- 4. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- 5. P. F. Brown, S. Della Pietra, V. J. Della Pietra, and R. L. Mercer. The mathematic of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2):263-311, 1994
- 6. Ilachinski, Andrew, 2001, Cellular Automata, Singapore: World Scientific Publishing.
- 7. Miller, John H. and Scott E. Page, 2007, Complex Adaptive System, Princeton, NJ: Princeton University Press.
- 8. Bradley, Stephen, Arnoldo Hax, and Thomas Magnanti. "Applied mathematical programming." (1977) link
- 9. Nisan, Noam, et al., eds. Algorithmic game theory. Vol. 1. Cambridge: Cambridge University Press, 2007. link
- 10. Christopher, M. Bishop. PATTERN RECOGNITION AND MACHINE LEARNING. Springer-Verlag New York, 2016.
- 11. Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998. link
- 12. Papadimitriou, Christos H., and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity. Courier Corporation, 1998.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows IEEE and ACM curricula recommendations for computer science studies
- The course exists in the studying program of major universities abroad
- Software companies consider the content of the course useful in developing students' modeling and programming abilities

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 Know basic concepts of the domain Apply intelligent principles from the course content to solve complex and difficult problems 	Project presentation (oral)	30%
10.5 Seminar/lab activities	 Specify, design, implement and test intelligent methods Effective solving of problems using implemented methods 	Systematic observation of the student during laboratory work and project implementation	70%

10.6 Minimum performance standards

- Each student must demonstrate achieving an acceptable level of knowing and understanding the domain, the ability to express knowledge in a coherent form, the capacity to establish certain connections and use knowledge to solve problems.
- To pass the exam the student must:
 - o Realize at least 70% from the project

Date	Signature of course coordinator	Signature of seminar coordinator
October, 2 nd , 2024	Prof. PhD. Dioșan Laura	Prof. PhD. Dioșan Laura
Date of approval	Signa	ture of the head of department