SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Cyber Security (in English)
Qualification	

2. Information regarding the discipline

	•	9		1			
2.1 Name of the discipline (Quality Aspects of Security in Software Testing			
	(Aspecte calitative ale securității în testarea software)					a software)	
2.2 Course coor	2.2 Course coordinator Lecturer PhD Camelia Chisăliță-Crețu						
2.3 Seminar coordinator				Lecturer PhD Camelia Chisăliță-Crețu			
2.4. Year of	1	2.5	1	2.6. Type of C 2.7 Type of Mandatory			
study		Semester		evaluation		discipline	
2.8 Discipline	MME0105					•	•
Code	-	MME8195					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem +
				seminar/laboratory	1 project
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes				10	
Additional documentation (in libraries, on electronic platforms, field documentation)				20	
Preparation for seminars/labs, homework, papers, portfolios and essays					44
Tutorship				12	
Evaluations				8	
Other activities:				-	
0.7.T 1: 1: 1 1 . 1 1		0.4			

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	 OOP, Programming Fundamentals, Advanced Programming Methods
4.2. competencies	 Good programming skills in at least one of the programming languages Java, C#

5. Conditions (if necessary)

5.1. for the course	 Course hall with projector
5.2. for the seminar /lab	 Laboratory: computers and use of a programming language
activities	environment

6. Specific competencies acquired

Professional competencies	 C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 Applying solution patterns using specific engineering tools and mehods C3.4 Comparatively and experimentaly evaluation of the alternative solutions for performance optimization C4.4 Managing the life cycle of hardware, software and communications systems based on performance evaluation
Transversal competencies	 C4.5 Developing, implementing and integrating software solutions CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• Enhance the students understanding of testing and test design techniques.
discipline	• Provide the students with an environment in which they can explore the
	usage and usefulness of software testing and test design concepts in
	various business scenarios.
	• Induce a realistic and industry driven view of software testing concepts
	and their inherent benefits.
7.2 Specific objective of the	• Give students the ability to explore various test design techniques
discipline	applied to different levels of testing.
	• Improve the students' abilities to tackle on goal driven testing.
	• Enhance the students understanding of test design techniques value in
	business.
	• Students will be able to use various tools for the testing process (i.e., test
	management, test running, test reporting and bug reporting).
	• Students will be able to design test cases according to an established
	testing goal and using specific test design technique in order to
	investigate the software.

8. Content

8.1 Course	Teaching methods	Remarks
 Software Testing. Test Design Techniques Software Testing. Goals. Scope Test Design Technique. Attributes Taxonomy of Test Design Techniques 	Interactive exposureExplanation. ConversationDidactical demonstration	
2. Coverage-based Techniques I2.1. Focus. Objectives2.2. Tours. Logical Expressions	Interactive exposureExplanation. ConversationDidactical demonstration	
3. Coverage-based Techniques II3.1. Specification-based Testing;3.2. Requirements-based Testing;	Interactive exposureExplanation. ConversationDidactical demonstration	
4. Risk-based Techniques I4.1. Focus. Objectives4.2. Quick-tests. History-based Testing	Interactive exposureExplanation. ConversationDidactical demonstration	

4.3. Boundary testing. Usability Testing	
5. Risk-based Techniques II	Interactive exposure
5.1. HTSM	• Explanation. Conversation
5.2. Risk catalogues	Didactical demonstration
6. Activity-based Techniques	Interactive exposure
6.1. Focus. Objectives	Explanation
6.2. Guerilla Testing. All-pairs Testing	Conversation
6.3. Use Cases Testing. Scenario Testing	Didactical demonstration
Coverage-based Techniques vs Activity-based	• Didactical demonstration
Techniques	
7. Evaluation-based Techniques	Interactive exposure
7.1. Focus. Objectives	Explanation. Conversation
7.2. Function Equivalence Testing. Self-	Didactical demonstration
verifying data	Didactical demonstration
8. Desired result-based Techniques	Interactive exposure
8.1. Focus. Objectives	Explanation. Conversation
8.2. Confirmation Testing. User Acceptance	Didactical demonstration
Testing	5 Biddetical demonstration
8.3. Desired-based Techniques vs Evaluation-	
based Techniques	
9. Tester-based Techniques	Interactive exposure
9.1. Focus. Objectives	• Explanation. Conversation
9.2. User Testing. Alpha Testing. Beta Testing	Didactical demonstration
9.3. Bug Bashes. Paired Testing.	2 100011001 00111011011011
9.4. Coverage-based Techniques vs Tester-based	
Techniques	
10. Test Design Techniques Analysis	Interactive exposure
10.1.Tester-based Techniques vs Activity-based	Explanation. Conversation
Techniques	Didactical demonstration
10.2.Risk-based Techniques vs Coverage-based	
Techniques	
10.3.Desired result-based Techniques vs Risk-	
based Techniques	
11. Security Testing	Interactive exposure
11.1.Terminology	Explanation. Conversation
11.2.Types	Didactical demonstration
11.3.Advanced Techniques	
12. Bug Reporting	• Interactive exposure
12.1.Challenges	Explanation. Conversation
12.2.RIMGEA Strategy	Didactical demonstration
13. Project Preparation	Interactive exposure
	Conversation
14. Project Presentations	Interactive exposure
	• Conversation
Ribliography	

Bibliography

[Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, Testing Computer Software, Wiley, 1999.

[Brn02] I. Burnstein, Practical Software Testing, Springer, 2002.

[Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002.

[Mye04] Glenford J. Myers, *The Art of Software Testing*, John Wiley & Sons, Inc., 2004.

[Nai08] K. Naik, P. Tripathy, *Software testing and quality assurance. Theory and Practice*, A John Wiley & Sons, Inc., 2008.

[Crs09] L. Crispin, J. Grecory, Agile testing: a practical guide for testers and agile teams, Addison-Wesley, 2009.

[Pres10] R. S. Pressman, *Software engineering: a practinioner's approach*, seventh edition, Higher Education, 2010.

[BBST2008] BBST – Bug Advocacy,

http://www.testingeducation.org/BBST/bugadvocacy/BugAdvocacy2008.pdf

[BBST2010] BBST – Fundamentals of Testing, Cem Kaner,

http://www.testingeducation.org/BBST/foundations/BBSTFoundationsNov2010.pdf.

[BBST2011] BBST – Test Design, Cem Kaner,

http://www.testingeducation.org/BBST/testdesign/BBSTTestDesign2011pfinal.pdf

[Whitt2012] J. Whittaker, J. Arbon J. Carollo, *How Google Tests Software*, Google, Pearson Education, 2012.

[OWASP2014] QWASP, Testing guide 4.0, 2014, https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP Testing Guide v4.pdf

[NRVR2014] Ana Filipa Nogueira, José Carlos Ribeiro, Francisco Fernández de Vega, Mário Alberto Zenha-Rela, *Object-Oriented Evolutionary Testing: A Review of Evolutionary Approaches to the Generation of Test Data for Object-Oriented Software*, International Journal of Natural Computing Research 4(4):15-35, October, 2014.

[KMS2014] Kaur, Manpreet and Rupinder Singh. A Review of Software Testing Techniques, 2014.

[Meer2014] Joris Meerts, Functional Testing Heuritics,

https://www.testingreferences.com/docs/Functional_Testing_Heuristics.pdf

[Draghia2019] Claudiu Draghia, Gamificarea in software testing. Testing Challenges,

http://testingchallenges.thetestingmap.org/, 2019.

[ForK2019] István Forgács, Attila Kovács, *Practical Test Design Selection of traditional and automated test design techniques*, BCS, 2019.

[BSR2021] F. A. Bhuiyan, M. B. Sharif and A. Rahman, *Security Bug Report Usage for Software Vulnerability Research: A Systematic Mapping Study*, IEEE Access, vol. 9, pp. 28471-28495, 2021, doi: 10.1109/ACCESS.2021.3058067.

[AIW2021] Samah W.G. AbuSalim, Rosziati Ibrahim, Jahari Abdul Wahab, *Comparative Analysis of Software Testing Techniques for Mobile Applications*, Journal of Physics: Conference Series, vol 1793, 2021.

[PLGM2022] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, Raymond J. Mooney, *Learning to Describe Solutions for Bug Reports Based on Developer Discussions*, ACL 2022, pp. 2935 – 2952.

8.2 Seminar / laboratory Teaching methods Remarks	
1. Laboratory 1 Presentation, Conversation,	
Testing Project Setup Problematizations, Discovery, Other	
methods – individual study, exercises	
2. Laboratory 2 Presentation, Conversation,	
Coverage-based Techniques Problematizations, Discovery, Other	
methods – individual study, exercises	
3. Laboratory 3 Presentation, Conversation,	
Risk-based Techniques Problematizations, Discovery, Other	
methods – individual study, exercises	
4. Laboratory 4 Presentation, Conversation,	
Test Automation Tools Problematizations, Discovery, Other	
methods – individual study, exercises	
5. Laboratory 5 Presentation, Conversation,	
Activity-based Techniques Problematizations, Discovery, Other	
methods – individual study, exercises	
6. Laboratory 6 Presentation, Conversation,	
Desired result-based Techniques Problematizations, Discovery, Other	
methods – individual study, exercises	
7. Laboratory 7 Evaluation	
Project turn-in	

References:

[Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, *Testing Computer Software*, Wiley, 1999.

[Brn02] I. Burnstein, *Practical Software Testing*, Springer, 2002.

[Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002.

[Mye04] Glenford J. Myers, *The Art of Software Testing*, John Wiley & Sons, Inc., 2004.

[Nai08] K. Naik, P. Tripathy, *Software testing and quality assurance. Theory and Practice*, A John Wiley & Sons, Inc., 2008.

[Crs09] L. Crispin, J. Grecory, *Agile testing: a practical guide for testers and agile teams*, Addison-Wesley, 2009.

[Pres10] R. S. Pressman, *Software engineering: a practinioner's approach*, seventh edition, Higher Education, 2010.

[BBST2008] BBST – Bug Advocacy,

http://www.testingeducation.org/BBST/bugadvocacy/BugAdvocacy2008.pdf

[BBST2010] BBST – Fundamentals of Testing, Cem Kaner,

http://www.testingeducation.org/BBST/foundations/BBSTFoundationsNov2010.pdf.

[BBST2011] BBST – Test Design, Cem Kaner,

http://www.testingeducation.org/BBST/testdesign/BBSTTestDesign2011pfinal.pdf

[Whitt2012] J. Whittaker, J. Arbon J. Carollo, *How Google Tests Software*, Google, Pearson Education, 2012.

[OWASP2014] QWASP, Testing guide 4.0, 2014, https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP Testing Guide v4.pdf

[NRVR2014] Ana Filipa Nogueira, José Carlos Ribeiro, Francisco Fernández de Vega, Mário Alberto Zenha-Rela, *Object-Oriented Evolutionary Testing: A Review of Evolutionary Approaches to the Generation of Test Data for Object-Oriented Software*, International Journal of Natural Computing Research 4(4):15-35, October, 2014.

[KMS2014] Kaur, Manpreet and Rupinder Singh. A Review of Software Testing Techniques, 2014.

[Meer2014] Joris Meerts, Functional Testing Heuritics,

https://www.testingreferences.com/docs/Functional_Testing_Heuristics.pdf

[Draghia2019] Claudiu Draghia, Gamificarea in software testing. Testing Challenges,

http://testingchallenges.thetestingmap.org/, 2019.

[ForK2019] István Forgács, Attila Kovács, *Practical Test Design Selection of traditional and automated test design techniques*, BCS, 2019.

[BSR2021] F. A. Bhuiyan, M. B. Sharif and A. Rahman, *Security Bug Report Usage for Software Vulnerability Research: A Systematic Mapping Study*, IEEE Access, vol. 9, pp. 28471-28495, 2021, doi: 10.1109/ACCESS.2021.3058067.

[AIW2021] Samah W.G. AbuSalim, Rosziati Ibrahim, Jahari Abdul Wahab, *Comparative Analysis of Software Testing Techniques for Mobile Applications*, Journal of Physics: Conference Series, vol 1793, 2021.

[PLGM2022] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, Raymond J. Mooney, *Learning to Describe Solutions for Bug Reports Based on Developer Discussions*, ACL 2022, pp. 2935 – 2952.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to apply test design techniques for a software product, in a similar way they are used in industry.
- Students will be able to understand the differences between the goals and scope of the various test techniques applied to a software system.

10. Evaluation

I O I I MI MI MI MI			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the
		methods	grade (%)
10.1 Lecture	Two workshops on the offensive and	Oral evaluation	20%
	defensive security on applications.		
	Students will be graded based on the		
	engagement in the activities. The		
	arithmetic average of the grades is		

	denoted by W.		
10.2 Seminar	Seminar report on a security topic will be	Oral evaluation	30%
	graded. The grade is denoted by S .		
10.3 Project	Design and develop a testing solution	Oral Examination	50%
-	(project) for a software product with focus		
	various types of security vulnerabilities.		
	The corresponding grade is denoted by P.		

Remark:

- Seminar reports will pe achieved in groups of 3-4 students.
- Security testing projects will pe achieved in groups of 3-4 students.

10.6 Minimum performance standards

- The final grade (M) is computed as follows: M = 30%S + 20%W + 50%P.
- The seminar report and the project should be turned in order to pass the exam.
- At least $M \ge 5.00$ is favourable to pass this course exam.

Date Signature of course coordinator

Signature of seminar coordinator

16.04.2024 Lee

Lect. PhD. Camelia Chisăliță-Crețu,

Lect. PhD. Camelia Chisăliță-Crețu,

Date of approval

Signature of the head of department

Assoc. Prof. PhD. Adrian Sterca