SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Modern Methods in Mathematics Teaching
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline	Topics in Mathematical Analysis III			
2.2 Course coordinator	Prof. Octavian Agratini, Ph.D.			
2.3 Seminar coordinator	Prof. Octavian Agratini, Ph.D.			
2.4. Year of study 2 2.5 Semester	4 2.6. Type of Exam 2.7 Type of discipline Options evaluation			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/ laboratory	1
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6 seminar/ laboratory	12
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					56
Additional documentation (in libraries, on electronic platforms, field documentation)				48	
Preparation for seminars/labs, homework, papers, portfolios and essays				40	
Tutorship				10	
Evaluations				35	
Other activities				-	
3.7 Total individual study hours 189					
3.8 Total hours per semester 225					
3.9 Number of ECTS credits 9					

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis 1 (on R)
	Mathematical Analysis 2 (Calculus on R ⁿ)
4.2. competencies	Ability to use abstract notions, theoretical results and practical
	methods of Mathematical Analysis.

5. Conditions (if necessary)

5.1. for the course	Lecture hall equipped with blackboard and beamer
5.2. for the seminar /lab activities	Classroom equipped with blackboard

6. Specific competencies acquired

Professional competencies	To use appropriate theoretical results and methods for solving different classes of mathematical analysis problems.
Transversal	To apply rigorous and efficient work rules, by adopting a responsible attitude towards the scientific and didactic activities. To develop the own creative potential in specific areas, following the professional ethical norms and principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of	Enhanced understanding of some special topics in Mathematical Analysis
the discipline	useful to high-school teachers.
7.2 Specific objective of	Students should acquire solving skills for challenging problems, by an in-
the discipline	depth study of key notions and fundamental theoretical results.

8. Content

8.1 Course	Teaching methods	Remarks
1. Sequences defined by linear recurrences with	Direct instruction, mathematical	
constant coefficients.	proof, exemplification	
2. Special classes of sequences defined by nonlinear	Direct instruction, mathematical	
recurrences.	proof, exemplification	
3.Techniques to solve equations.	Direct instruction, mathematical	
4. Socios of mal numbers, Couchy and Diamona	proof, exemplification	
4. Series of real numbers: Cauchy and Riemann	Direct instruction, mathematical	
theorems concerning the permutations of absolutely	proof, exemplification	
convergent and of conditionally convergent series, respectively.		
5. Abel, Cauchy and Mertens theorems concerning	Direct instruction, mathematical	
the product of two series.	proof, exemplification	
6. The Darboux property. Applications.	Direct instruction, mathematical	
	proof, exemplification	
7. Uniformly continuous functions and their	Direct instruction, mathematical	
sequential characterization; Lipschitz and Hölder	proof, exemplification	
continuous functions.		
8. Computing methods for the primitives.	Direct instruction, mathematical	
	proof, exemplification	
9. Riemann integrable functions.	Direct instruction, mathematical	
	proof, exemplification	
10. Convex functions (one variable);	Direct instruction, mathematical	

characterizations and regularity properties	proof, exemplification	
(continuity, one sided derivability).		
11. Characterizations of convexity by means of	Direct instruction, mathematical	
tangent lines, first and second order derivatives.	proof, exemplification	
12. Approximation of functions.	Direct instruction, mathematical	
	proof, exemplification	

Bibliography

- 1. BRECKNER, B.E., POPOVICI, N.: Convexity and Optimization. An Introduction. Editura EFES, Cluj-Napoca, 2006.
- 2. BRECKNER, W.W., TRIF, T.: Convex Functions and Related Functional Equations. Selected Topics. Presa Universitară Clujeană, 2008.
- 3. COBZAŞ, Şt.: Analiză matematică (Calcul diferențial). Presa Universitară Clujeană, Cluj-Napoca, 1997.
- 4. ROBERTS, A.W., VARBERG, D.E.: Convex Functions. Academic Press, 1973.
- 5. RUDIN, W.: Principles of Mathematical Analysis. 2nd Edition, McGraw-Hill, New York, 1964.
- 6. SIREȚCHI, Gh.: Calcul diferențial și integral. Vol. 1: Noțiuni fundamentale. Editura Științifică și Enciclopedică, București, 1985.

		Remarks
8.2 Seminar	Teaching methods	
1. Sequences defined by linear recurrences.	Problem-based instruction,	
Examples.	debate, mathematical proofs	
2. Sequences defined by nonlinear recurrences.	Problem-based instruction,	
Examples.	debate, mathematical proofs	
3.The chord and tangent method for solving equations.	Problem-based instruction,	
	debate, mathematical proofs	
4. The fixed point method for solving equations.	Problem-based instruction,	
	debate, mathematical proofs	
5. Remarkable series of real numbers.	Problem-based instruction,	
	debate, mathematical proofs	
6. Mean values theorems. Applications.	Problem-based instruction,	
	debate, mathematical proofs	
7. Wallis and Stirling formulae.	Problem-based instruction,	
	debate, mathematical proofs	
8. Taylor series.	Problem-based instruction,	
	debate, mathematical proofs	
9. Uniform continuity; Lipschitz continuous	Problem-based instruction,	
functions.	debate, mathematical proofs	
10. The Darboux property and	Problem-based instruction,	
antiderivability.	debate, mathematical proofs	
11. Applications of convexity. Inequalities.	Problem-based instruction,	
	debate, mathematical proofs	
12. Classes of linear operators.	Problem-based instruction,	
	debate, mathematical proofs	
Rihliography		

Bibliography

1. APOSTOL, T. M.: Modular functions and Dirichlet series in number theory. Springer-Verlag, New

York, 1990.

- 2. BORWEIN, J.M., LEWIS, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples. CMS Books in Mathematics, Springer, 2000.
- 3. BRECKNER, B.E., POPOVICI, N.: Probleme de analiză convexă în Rⁿ. Casa Cărții de Știință, Cluj-Napoca, 2003.
- 4. COBZAŞ, Şt.: Analiză matematică (Calcul diferențial). Presa Universitară Clujeană, Cluj-Napoca, 1997.
- 5. SIREȚCHI, Gh.: Calcul diferențial și integral. Vol. 2: Exerciții, Editura Științifică și Enciclopedică, București, 1985.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	- Knowledge of	Written exam	70%	
	theoretical concepts and			
	theoretical results;			
	- Ability to solve			
	practical exercises and			
	theoretical problems			
10.5 Seminar/lab	Active participation to	Continuous evaluation	30%	
activities	tutorials (problem			
	solving).			
10.6 Minimum performance standards				
The final grade should be greater than or equal to 5.				

Date Signature of course coordinator Signature

Signature of seminar coordinator

22.04.2024 Prof. Octavian Agratini, Ph.D.

Prof. Octavian Agratini, Ph.D.

Date of approval

Signature of the head of department

Prof. Andrei Mărcuș, Ph.D.

30.04.2024