syllabus

1. Information regarding the programme					
1.1 Higher education	Babeș Bolyai University				
institution					
1.2 Faculty	Faculty of Mathematics and Computer Science				
1.3 Department	Department of Computer Science				
1.4 Field of study	Computer Science				
1.5 Study cycle	Bachelor				
1.6 Study programme /	Mathematics and Computer Science (english)				
Qualification					

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en) (ro)			rtificial Intelligence nteligenta Artificiala				
2.2 Course coordina	2.2 Course coordinator Lecturer, PhD Mihoc Tudor Dan						
2.3 Seminar coordinator		Lecturer, PhD Mihoc Tudor Dan					
2.4. Year of study	2	2.5 Semester	4	2.6. Type of evaluation	E	2.7 T ype of discipli- ne	0
2.8 Code of the discipline			M	LE5029	-		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 courses	2	3.3 seminar/laboratory	1 / 1
3.4 Total hours in the curriculum	48	Of which: 3.5 courses	24	3.6 seminar/laboratory	12 / 12
		0001505		semmal/haboratory	
Time allotment:					hours
Learning using manual, course sup	pport,	bibliography, cou	rse no	tes	24
Additional documentation (in libraries, on electronic platforms, field documentation)					12
Preparation for seminars/labs, homework, papers, portfolios and essays					24
Tutorship					4
Evaluations					13
Other activities:					
3.7 Total individual study hours 77					
3.8 Total hours per semester	3.8 Total hours per semester 125				
3.9 Number of ECTS credits5					

4. Prerequisites (if necessary)

4.1. curriculum	Graph Theory, Data Structures and Algorithms
4.2. competencies	Average programming skills in a high-level
	programming language

5. Conditions (if necessary)

5.1. for the course	projector
5.2. for the seminar or	Laboratory with computers; high-level programming
lab activities	language environment

6. Specific competencies acquired

	-			
Professio	CE1.1	To describe the concepts and the research directions in Artificial		
nal com		intelligence,		
petencies	es CE1.2 To assess the quality and stability of the obtained solution compare them with solutions obtained by traditional methods			
	CE1.3	To use methods, techniques and algorithms from AI in order to model several classes of problems		
	CE1.4	To identify and explain specific AI techniques and algorithms and use them to solve specific problems		
	CE1.5	To integrate models and specific AI solutions in dedicated applications		
Transver sal	CT1	To apply the rules for organized and efficient work,		
competen cies	CT2	To promote a responsible attitude towards the educational - scientific domain in order to use the creative potential		
	CT3	To respect the principles and norms of professional etiquette		
	CT4	To use efficient learning methods and techniques for learning, documenting, and searching		
	CT5	To develop the capacity to use knowledge, adapt at the requests of a dynamic society, and properly communicate in Romanian and another international language		

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective	Ability to understand and use the basic AI algorithms and		
of the discipline	principles.		
	Ability to model real-life problems as AI problems and find		
	optimal solutions to them		
7.2 Specific	Acquire knowledge about the main classes of soft computing		
objectives of the	algorithms, the basic notions of game theory, and knowledge		
discipline	base reasoning.		

8. Content

8.1	Course	Teaching methods	Remarks
	Introduction to AI: History, Method, and Ethical Issues	Exposure:	
2.	Machine learning and decision trees	• description,	
3.	Neural networks I: Perceptron model, feed-forward neural networks	• explanation,	
4.	Neural networks II: Multi-Layer layer	• examples,	
	neural networks, Backpropagation	• case studies,	
_	Algorithm	 discussion 	
5.	Types of ANNs		
6.	Intelligent Systems : Support Vector Machines, K mean		
7.	Knowledge representation and		
	reasoning in rule-based systems:		
	Uncertainty management in rule-based systems		
8.	Problem solving as search: Problem		
	spaces, Uninformed search, BFS, DFS,		
	Limited DFS, Iterative deepening search, UCS		
9.	Problem solving as search: Informed		
	search, Heuristic search, Best-first		
	search, Greedy, A* algorithm, A* variants		
10.	Local search: Simulated annealing,		
	Hill climbing Evolutionary computation:		
	Evolutionary algorithms		
11.	Evolutionary Computation:		
	Evolutionary strategies, Evolutionary		
	programming, and Genetic		
	programming		
12.	Swarm intelligence: Particle swarm		
	optimization, Ant colony optimization		
•	bliography: Goldberg, D. E., <i>Genetic Algorithms</i> , Addison Russell, S., J., and Norvig, P., <i>Artificial Ir</i> Prentice Hall/Pearson Education, 2003. Zaki, Mohammed J., and Wagner Meira Jr	ntelligence: A Modern Ap	-

- Zaki, Mohammed J., and Wagner Meira Jr., *Data mining and machine learning*. *fundamental concepts and algorithms*, Cambridge University Press, 2020.
- Géron, Aurélien, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly Media, Inc., 2022.

8.2 Laboratory/Seminars	Teaching methods	Remarks
S1. Monte Carlo Methods: simulation,		
sampling, and biases		

Bibliography:

- Goldberg, D. E., *Genetic Algorithms*, Addison-Wesley, Reading, 1989.
- Russell, S., J., and Norvig, P., *Artificial Intelligence: A Modern Approach*, N.J. Prentice Hall/Pearson Education, 2003.
- Zaki, Mohammed J., and Wagner Meira Jr., *Data mining and machine learning:* fundamental concepts and algorithms, Cambridge University Press, 2020.
- Géron, Aurélien, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly Media, Inc., 2022.

9. Correlating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course follows the scheme and structure used by the most important universities in the USA and Europe.

The course exists in the study programs of all major universities in Romania and abroad.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in	
		methods	the grade (%)	

10.4 Course	How well do students know the basic principles of the AI domain? How well can they apply the course concepts to solve real problems?	Written exam	60%
10.5 Seminar/lab activities	How well are students able to implement the presented methods and algorithms in labora- tories?	Laboratory / seminar assignments	40%

10.6 Minimum performance standards

All seminar and laboratory classes are mandatory. Minimum attendance requirements in order to pass are 75% in seminars and 90% in laboratories.

At least **grade 5** (from a scale of 1 to 10) at the final mark is required in order to pass.

Date

Signature of course coordinator Lecturer Phd. Tudor Dan Mihoc Signature of seminar coordinator Lecturer, Phd. Tudor Dan Mihoc

Date of approval

Signature of the head of department

.....

.....