SYLLABUS

O	
1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the d	iscipli	ne (en)	Fo	rmal Languages and	Con	npiler Design	
(ro)							
2.2 Course coordi	nator		Pro	of.PhD. Simona Moto	gna		
2.3 Seminar coord	linator		Pro	of.PhD. Simona Moto	gna		
2.4. Year of study	3	2.5 Semester	5	2.6. Type of	Ε	2.7 Type of	Compulsory
				evaluation		discipline	
2.8 Code of the		MLE5023					
discipline							

3. Total estimated time (hours/semester of didactic activities)

et i otal estimatea time (nouis/seme		alaactic activities)			
3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1sem
				seminar/laboratory	+ 11ab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support	rt, bit	oliography, course note	s		7
Additional documentation (in libraries	s, on	electronic platforms, fi	eld doo	cumentation)	4
Preparation for seminars/labs, homew	ork, j	papers, portfolios and e	essays		6
Tutorship					1
Evaluations					1
Other activities:					-
3.7 Total individual study hours		19			
3.8 Total hours per semester		75			
3.9 Number of ECTS credits		3			

5.6 Total nouis per semester	15
3.9 Number of ECTS credits	3

4. Prerequisites (if necessary)

4.1. curriculum	•	Data Structures and Algorithms
-----------------	---	--------------------------------

1 0		•
42	com	petencies
	com	

• Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Course room with projector
5.2. for the seminar /lab	• Laboratory with computers; high level programming language environment
activities	(.NET or any Java environement a.s.o.)

6. Specific competencies acquired

Professional	 C4.1 Definition of concepts and basic principles of computer science, and their mathematical models
competencies	and theories C4.2 Interpretation of mathematical and computer science models C4.5 Adoption of formal models in specific applications from different domains
Transversal competencies	CT1 Apply rules to: organized and efficient work, responsabilities of didactical and scientifical activities and creative capitalization of own potential, while respecting principles and rules for professional ethics CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accomodation to society requirements and communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand compiler design and to implement compiler techniques Improved programming skills
7.2 Specific objective of the discipline	 Acquire knowledge about back-end of a compiler Understand and work with formal languages concepts: Chomsky hierarchy; regular grammars, finite automata and the equivalence between them; context-free grammars, push-down automata and their equivalence Understand and work with compilers concepts: scanning, parsing

Teaching methods	Remarks
Exposure: description,	
explanation, examples,	
discussion of case	
studies	
Exposure: description,	
explanation, examples,	
discussion of case	
studies	
Exposure: description,	
explanation, examples,	
debate, dialogue	
Exposure: description,	
	Exposure: description, explanation, examples, discussion of case studies Exposure: description, explanation, examples, discussion of case studies Exposure: description, explanation, examples, debate, dialogue

· · · · · · · · · · · · · · · · · · ·	
equivalence between finite automata, regular	explanation, examples,
grammars and regular expressions. Pumping	proofs
lemma	
5. Context-free grammars, syntax tree	Exposure: description,
	explanation, examples,
	discussion of case
	studies
6. Parsing: general notions, classification.	Exposure: description,
	explanation, examples,
	discussion of case
	studies
7. Recursive-descendant parser	Exposure: description,
	explanation, examples,
	discussion of case
	studies
8. LL(1) parser	Exposure: description,
	explanation, examples,
	discussion of case
	studies
9. LR(k) Parsing method. LR(0) parser	Exposure: description,
	explanation, examples,
	discussion of case
	studies
10. SLR, LR(1), LALR parser	Exposure: description,
	explanation, examples,
	discussion of case
	studies
11. Scanner generator (lex); Parser generators (yacc)	Exposure: description,
	examples, discussion of
	case studies, live demo
12. Attribute grammars; generation of	Exposure: description,
intermediary code	explanation, examples,
	discussion of case
	studies
13. Code optimization and object code generation	Exposure: description,
15. Code optimization and object code generation	explanation, examples,
	discussion of case
	studies
14. Push-down automata and Turing machines	Exposure: description,
14.1 ush-down automata and 1 uning machines	explanation, examples,
	discussion of case
	studies
Bibliography	วเนนเธว

Bibliography

1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.

2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.

3. D. GRIES - Compiler construction for digital computers,, John Wiley, New York, 1971.

4. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006

5. SIPSER, M., Introduction to the theory of computation, PWS Pulb. Co., 1997

6. CSÖRNYEI ZOLTÁN, Bevezetés a fordítóprogramok elméletébe, I, II., ELTE, Budapest, 1996

7. L.D. SERBANATI - Limbaje de programare si compilatoare, Ed. Academiei RSR, 1987.

8. CSÖRNYEI ZOLTÁN, Fordítási algoritmusok, Erdélyi Tankönyvtanács, Kolozsvár, 2000.

9. DEMETROVICS JÁNOS-DENEV, J.-PAVLOV, R., A számítástudomány matematikai alapjai, Nemzeti Tankönyvkiadó,

). GRUNE, DICK - BAL, H JACOBS, C LANGENDOEN, K.: N 2 Seminar	Teaching methods	Remarks
1. Specification of a programming language; BNF	Explanation, dialogue,	
notation	case studies	
2. Grammars; language generated by a grammar;	Dialogue, debate, case	
grammar corresponding to a language	studies, examples,	
	proof	
3. Finite automata: language generated by a FA; FA	Dialogue, debate, case	
corresponding to a language	studies, examples,	
	proof	
4. Transformations: finite automata – regular	Dialogue, debate, case	
grammars	studies, examples,	
	proof	
5. Context free grammars; descendent recursive	Dialogue, debate, case	
parser	studies, examples,	
	proof	
6. LL(1) parser	Dialogue, debate, case	
	studies, examples,	
	proof	
7. LR(0) parsers	Dialogue, debate, case	
	studies, examples,	
	proof	
3. Laboratory	Teaching methods	Remarks
Task 1: Specify a mini-language and implement scanner	Explanation, dialogue,	
L: Mini language specification (BNF notation)	case studies	
Task 1: Specify a mini-language and implement scanner	Explanation, dialogue,	
2: Writing a small program in the minilanguage	case studies	
Task 1: Specify a mini-language and implement scanner	Explanation, dialogue,	
3: Use lex for scanner	case studies	
Task 1: Specify a mini-language and implement scanner	Testing data discussion,	
4: Determine lexical tokens using FA	evaluation	
Task 2: Parsing	Explanation, dialogue,	
1: Define grammar for specified syntactical structures	case studies	
Task 2: Parsing	Testing data discussion,	
2: Use yacc for parsing	evaluation	
Task 3: Parsing	Explanation, dialogue,	
3: final delivery	case studies	

1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.

2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.

3. MOTOGNA, S. - Metode de proiectare a compilatoarelor, Ed. Albastra, 2006

4. G. MOLDOVAN, V. CIOBAN, M. LUPEA - Limbaje formale si automate. Culegere de probleme, Univ. Babes-Bolyai, Cluj-Napoca, 1996.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;

• The course exists in the studying program of all major universities in Romania and abroad;

• The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	60%	
10.5 Seminar and lab activities	 be able to apply algorithms, understand examples - problem solving 	problems solved - homeworks delivered - continuous observations during semester	10%	
	 be able to implement course concepts and algorithms apply techniques for different classes of programming languages 	-Practical examination during all semester -documentation - portofolio -continous observations	30%	
10.6 Minimum performance standards				
 Attend 75% of seminar activities during semester AND attend 90% of lab activities during semester At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work. 				

Date	Signature of course coordinator	Signature of seminar coordinator
27.04.2023	Prof.PhD. Simona MOTOGNA	Prof.PhD. Simona MOTOGNA

Date of approval

Signature of the head of department

.....

Prof.dr. Laura Dioșan