SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeș-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en) Numerical Methods in Mechanics							
(ro)) Metode Numerice in Mecanica						
2.2 Course coordinatorProf. Dr. Teodor Grosan							
2.3 Seminar coordinator				Prof. Dr. Teodor Grosan			
2.4. Year of	ear of 3 2.5			2.6. Type of	Ε	2.7 Type of	DS/Optional
study Semester				evaluation		discipline	
2.8 Code of the discipline MLE0062							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	4 Total hours in the curriculum 56 Of which: 3.5 course 28 3.6		3.6	28	
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					20
Evaluations					4
Other activities:					
3.7 Total individual study hours 94					•
3.8 Total hours per semester150					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Numerical analysis
4.2. competencies	Matlab, programming

6

5. Conditions (if necessary)

5.1. for the course	Video projector
---------------------	-----------------

5.2. for the seminar /lab	Matlab software
activities	

6. Specific competencies acquired

P	the competencies acquired
Professional competencies	C4.1 Defining basic concepts, theory and numerical models C4.2 Ability to work independently or in a team to model and solve concrete problems C4.3 Programming using mathematical software
Transversal competencies	CT1 Ability to numerically model concrete real-life problems.CT2 Ability to choose the most appropriate numerical modelCT3 Improving the skills of use and programming using mathematical software

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Knowledge, understanding and use of main concepts and results related to numerical methods.
7.2 Specific objective of the discipline	• Mathematical manipulation of mathematical theories, concepts and numerical methods.

8. Content

8.1 Course	Teaching methods	Remarks
1. Polynomial interpolation. Efficient algorithms for	exposure,	
polynomial interpolation. Divided differences.	problematization,	
	exemplify, discussion,	
	discussion of case.	
2. Interpolate Spline. B-splines.	exposure,	
	problematization,	
	exemplify, discussion,	
	discussion of case.	
3. Least Squares Method.	exposure,	
	problematization,	
	exemplify, discussion,	
	discussion of case.	
4. Linear regression. Linear models and forecasts.	exposure,	
Curves fitting.	problematization,	
	exemplify, discussion,	
	discussion of case.	
5. Initial values problems. Explicit and implicit Euler's	exposure,	
method. Taylor series expansions.	problematization,	
Euler's modified method, Heun's method.	exemplify, discussion,	
	discussion of case.	
6. Runge-Kutta methods. Stability	exposure,	
Convergence. Global error asymptotics.	problematization,	
Global error estimation. Richardson's extrapolation	exemplify, discussion,	
	discussion of case.	

and nasted methods					
and nested methods.	avpoque				
7. Step control. Stiff problems. Method	exposure,				
Euler's implicit and trapeze method	problematization, exemplify, discussion,				
	discussion of case.				
8. Byp problems. Introduction, Finite differences.	exposure,				
Shooting method	problematization,				
	exemplify, discussion, discussion of case.				
9. Keller-Box method.	exposure,				
3. Kenel-Dox method.	problematization,				
	exemplify, discussion,				
	discussion of case.				
10. Matlab ode and byp solvers.	exposure,				
10. Mariao ode and ovp solvers.	problematization,				
	exemplify, discussion,				
	discussion of case.				
11. Partial derivative equations. Parabolic equations	exposure,				
(1d).	problematization,				
(14).	exemplify, discussion,				
	discussion of case.				
12. 2d and 3d parabolic equations.	exposure,				
1 1	problematization,				
	exemplify, discussion,				
	discussion of case.				
13. Consistency. Convergence. Stability. Elliptic	exposure,				
equations.	problematization,				
	exemplify, discussion,				
	discussion of case.				
14. Hyperbolic equations	exposure,				
	problematization,				
	exemplify, discussion,				
	discussion of case.				
Bibliografie		1			
Agratini, O., Blaga, P., Chiorean, I., Coman, Gh., Stancu	I,D.D., Trimbitas, R.,: A	naliza numerica si teoria			
aproximarii (vol.I,II,III), Presa Univ.Clujeana, 2002	. Normania I Analasia D	une Unio Christen Chri			
Coman,Gh., Chiorean, I.,Catinas, T., Advance Course o	n Numerical Analysis, P	resa Univ. Clujeana, Cluj			
Napoca, 2007	D 1 C 1 2002				
Faires, J.D., Burden, R.L., Numerical Analysis, 3th ed.,					
Isaacson, E., Keller, H.B., Analysis of numerical metho					
Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press					
Morton, K.W., Mayers, D. F., Numerical Solution of Pa	Inal Differential Equatio	ns. An introduction, 2nd			
ed. Cambridge University Press, New York, 2005	I I I I I I I I I I I I I I I I I I I				
Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisfere, 1980					
Smith, G.D., Numerical Solution of Partial Differential Equations, Finite difference methods, 3th ed.,					
Clarendon Press, Oxford, 1985					
Serban M.A., Ecuatii si sisteme de ecuatii diferentiale, Presa Univ.Clujeana, 2009					
Trîmbitas, R.,: Analiza numerica. O introducere bazata pe MATLAB. Presa Univ. Clujeana 2005.					
8.2 Seminar / laborator	Teaching methods	Remarks			
1. Lagrange interpolation	Discussion, problem	IVIIIaI Kõ			
1. Lagrange interpolation	solving, self-study,				
	team work.				
	touin work.	1			

2. Least square method. Linear regression.	Discussion, problem solving, self-study,
	team work.
3. Initial value problems.	Discussion, problem
-	solving, self-study,
	team work
4. Runge-Kutta methods.	Discussion, problem
	solving, self-study,
	team work.
5. Boundary value problems.	Discussion, problem
	solving, self-study,
	team work.
6. Parabolic equations.	Discussion, problem
	solving, self-study,
	team work.
7.Elliptic and hyperbolic equations	Discussion, problem
	solving, self-study,
	team work

Bibliografie

Agratini, O., Blaga, P., Chiorean, I., Coman, Gh., Stancu , D.D., Trîmbitas, R.,: Analiza numerica si teoria aproximarii (vol.I,II,III), Presa Univ.Clujeana, 2002

Faires, J.D., Burden, R.L., Numerical Analysis, 3th ed., Brooks Cole, 2002

Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press 1996

Morton, K.W., Mayers, D. F., Numerical Solution of Partial Differential Equations. An introduction, 2nd ed. Cambridge University Press, New York, 2005

Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisfere, 1980

Smith, G.D., Numerical Solution of Partial Differential Equations, Finite difference methods, 3th ed., Clarendon Press, Oxford, 1985

Trîmbitas, R.,: Analiza numerica. O introducere bazata pe MATLAB. Presa Univ. Clujeana 2005.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad. This discipline is useful in preparing future teachers and researchers in, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results	Final Project	50%
	Ability to apply theory in modeling and solving problems		
10.5 Seminar/lab activities	Ability to apply theory in numerical models	Mid Term Project	50%

10.6 Minimum performance standards At least grade 5 (from a scale of 1 to 10). ۶

Date

Signature of course coordinator

Signature of seminar coordinator

22.04.2023.....

... Prof. dr. Teodor Grosan

Prof. .dr. Teodor Grosan

Grozon Teodor

Grogon Teodor

Signature of the head of department Professor Andrei Marcus

Date of approval

29.04.2023