SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	ne d	iscipline	Ma	athematical Statistics	5		
2.2 Course coordinator				Prof. Sanda Micula, PhD. Habil.			
2.3 Seminar coordinator				Prof. Sanda Micula,	PhD.	Habil.	
2.4. Year of	3	2.5	5	2.6. Type of	E	2.7 Type of	DS Compulsory
study		Semester		evaluation		discipline	
2.8 Course Co	de	MLE00	30				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	2 sem +
				seminar/laboratory	1 lab
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					10
Additional documentation (in libraries, on electronic platforms, field documentation)					7
Preparation for seminars/labs, homework, papers, portfolios and essays					5
Tutorship					3
Evaluations					5
Other activities:				-	

3.7 Total individual study hours	30
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Probability Theory		
	Mathematical Analysis		
4.2. competencies	Logical thinking		
	 Average logical programming skills in Matlab 		

5. Conditions (if necessary)

5.1. for the course	 Lecture room with large blackboard and video projector
---------------------	--

5.2. for the seminar /lab	For seminar: room with large blackboard
activities	 For lab: Laboratory with computers having Matlab installed

6. Specific competencies acquired

Professional competencies	C1.1 Identifying basic concepts, describing theory and using specific language C3.2 Interpretation of data and explaining the appropriate steps for solving problems by algorithms
Transversal competencies	CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquire basic knowledge of Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	 Become familiar and be able to work with various statistical models and procedures Ability to perform statistical analysis of data Ability to use statistical features of various mathematical software

8. Content

8. Content						
8.1 Course	Teaching methods	Remarks				
Review of Probability Theory. Probability space. Rules of probability. Conditional probability. Probabilistic models. Random variables and random vectors.	 Interactive exposure Explanation Conversation Didactical demonstration 					
Common discrete and continuous distributions. PDF and CDF. Examples, applications, properties.	 Interactive exposure Explanation Conversation Didactical demonstration 					
3. Descriptive Statistics. Data collection. Graphical display of data. Frequency distribution and histograms. Parameters of a statistical distribution. Measures of central tendency. Measures of variation.	 Interactive exposure Explanation Conversation Didactical demonstration 					
Correlation and regression. Correlation coefficient. Least squares estimation. Linear regression.	 Interactive exposure Explanation Conversation Didactical demonstration 					
5. Sample Theory. Samples. Sample functions: sample mean, sample variance, sample moments, sample distribution	Interactive exposureExplanationConversation					

function, sample proportions, sample functions for two populations. Properties.	Didactical demonstration
6. Statistical Inference. Estimation theory, basic notions. Unbiased and minimum variance estimators. Standard error. Common unbiased estimators. Consistent estimators. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration
7. Properties of point estimators. Likelihood function. Fisher's information. Absolutely correct estimators. Cramer-Raó Inequality. Efficiency and efficient estimators.	 Interactive exposure Explanation Conversation Didactical demonstration
8. Sufficient statistics, Raó-Blackwell Theorem. Complete statistics, Lehmann- Scheffé Theorem. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration
9. Methods of estimation. The method of moments estimator, the method of maximum likelihood estimator. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration
10. Confidence intervals. Basic concepts, general framework. Confidence intervals for estimating the population mean and the population variance. Confidence intervals for proportions. Selecting the sample size. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration
11. Confidence intervals for comparing two population means and two population variances. Confidence intervals for comparing proportions. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration
12. Hypothesis testing. Basic concepts, general framework. Rejection region. Type I errors. Significance testing and P-values. The Z-test for the mean. Selecting the sample size. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration
13. The T (Student)-test for the mean. Tests for proportions. The Chi-square-test for the variance. The F-test for the ratio of variances. Tests for the difference of means. Paired data tests. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration
14. Type II errors and the power of a test. Most powerful tests and the Neyman-Pearson lemma. Uniformly most powerful tests. Examples. Overview of statistical procedures.	 Interactive exposure Explanation Conversation Didactical demonstration
Ribliography	

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 3. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 4. Blaga, P., Calculul probabilitatilor si statistica matematica. Vol. II. Curs si culegere de probleme, Universitatea "Babes-Bolyai" Cluj-Napoca, 1994.
- 5. Feller, W., An introduction to probability theory and its applications, Vol. 1, 3rd edition, WSE Wiley, New York, 2008.

6. DeGroot, M. H., Schervish, M. J., Probability	and Statistics, Addison-Wesley, Bo	oston, 2012.
8.2 Seminar	Teaching methods	Remarks
Euler's Functions. Properties. Computation of moments of continuous random variables.	Interactive exposureExplanationConversation	
Rules of probability, random variables. Applications.	 Interactive exposure Explanation Conversation Individual/group work 	
Descriptive Statistics. Measures of central tendency and measures of variation.	Interactive exposureExplanationConversationIndividual/group work	
4. Correlation and regression. Correlation coefficient, lines of regression.	Interactive exposureExplanationConversationIndividual/group work	
5. Sample functions. Properties.	Interactive exposureExplanationConversationIndividual/group work	
6. Unbiased, consistent and minimum variance estimators.	 Interactive exposure Explanation Conversation Individual/group work 	
7. Fisher's information. Absolutely correct and efficient estimators.	 Interactive exposure Conversation Synthesis Individual/group work 	
8. Sufficient and complete statistics. Lehmann- Scheffé Theorem. Minimum variance unbiased estimators.	 Interactive exposure Explanation Conversation Individual/group work 	
9. Method of moments.	 Interactive exposure Explanation Conversation Didactical demonstration Individual/group work 	
10. Method of maximum likelihood.	Interactive exposureExplanationConversationIndividual/group work	
11. Confidence intervals for the mean, the variance and proportions. Selecting the sample size.	Interactive exposureExplanationConversationIndividual/group work	
12. Confidence intervals for comparing the parameters of two populations.	 Interactive exposure Explanation Conversation Individual/group work 	

 13. Hypothesis and significance testing for the mean, the variance and proportions. Selecting the sample size. 14. Hypothesis and significance testing for comparing the parameters of two populations. Most powerful tests. 	 Interactive exposure Explanation Conversation Individual/group work Interactive exposure Explanation Conversation Individual/group work 	
8.3 Laboratory	Teaching methods	Remarks
Review of Matlab features. Statistics and machine learning toolbox.	 Interactive exposure Explanation Conversation Individual/group work 	The lab is structured as 2 hours per week, every other week
2. Random number generators. Simulations of random variables. Samples, statistical measures.	 Interactive exposure Explanation Conversation Individual/group work 	
3. Descriptive Statistics. Histograms, frequency polygons, boxplots.	 Interactive exposure Explanation Conversation Individual/group work 	
4. Correlation and regression. Best fit of data.	 Interactive exposure Synthesis Conversation Individual/group work 	
5. Confidence intervals for means, variances and proportions.	 Interactive exposure Explanation Conversation Individual/group work 	
6. Confidence intervals for comparing two populations. Hypothesis and significance testing for the parameters of one population.	 Interactive exposure Explanation Conversation Individual/group work 	
7. Hypothesis and significance testing for comparing two populations and for paired data.	 Interactive exposure Explanation Conversation Individual/group work 	

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 3. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 4. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 5. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Mathematics and Computer Science majors;
- The course exists in the studying program of all major universities in Romania and abroad;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles in Mathematical Statistics; be able to apply correctly the course concepts on various applications 	Written exam	70%
10.5 Seminar/Lab activities	- apply course concepts and techniques on practical problems - choose and apply the appropriate statistical procedure to various practical problems - implement course concepts and algorithms in Matlab - to solve numerical statistical problems in Matlab	- participation in discussing and solving problems in seminar and lab throughout the semester - solving numerical statistical applications - additional documentation - individual presentation of solutions	30%

10.7 Minimum performance standards

A grade of 5 or above (on a scale from 1 to 10) on **each** of the activities mentioned above (written test, seminar/lab evaluation)

Date	Signature of course coordinator	Signature of seminar coordinator	
23.04.2023	Prof. Sanda Micula, PhD. Habil.	Prof. Sanda Micula, PhD. Habil.	
Date of approval	Signatur	Signature of the head of department	