SYLLABUS

It information regulating the pr	i inormation regularing the programme			
1.1 Higher education institution	Babeş - Bolyai University			
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Mathematics			
1.4 Field of study	Mathematics			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Mathematics and Computer Science			
Qualification				
1.3 Department1.4 Field of study1.5 Study cycle1.6 Study programme /	Department of Mathematics Mathematics Bachelor			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline		Probability Theory					
2.2 Course coordinator		As	Assoc. Prof. PhD Habil. Hannelore Lisei				
2.3 Seminar coordinator		As	Assoc. Prof. PhD Habil. Hannelore Lisei				
2.4. Year of study	2	2.5 Semester	4	2.6. Type of evaluation	E	2.7 Type of discipline	DF / Compulsory
2.8 Code of the discipline MLE1027							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					14
Additional documentation (in libraries, on electronic platforms, field documentation)					7
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					6
Evaluations				7	
Other activities:				-	
3.7 Total individual study hours		44			4
3.8 Total hours per semester		100			

3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis, Algebra
4.2. competencies	Set Theory, Combinatorics

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector	
5.2. for the seminar /lab	Classroom with blackboard/video projector	
activities		

6. Specific competencies acquired

al ies	C1.1. Identification of notions, description of theories and use of specific language
ssion etenc	C2.3. Application of appropriate theoretical models of analysis for solving given problems
Professional competencies	C5.2 Using mathematical arguments to prove mathematical results.
	CT1 Application of efficient and rigorous working rules, manifest responsible attitudes
al	towards the scientific and didactic fields, respecting the professional and ethical principles
Transversal competencies	
ans npe	
Tr cor	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Probability Theory, with focus on theoretical aspects, as well as its applications
7.2 Specific objective of the discipline	 Application of classical probabilistic models to solve real life problems Become familiar with classical probability distributions Properties of sequences of random variables

8. Content

	T 11 1	
8.1 Course	Teaching methods	Remarks
1. Introduction to Probability Theory.	Interactive exposure	
Experiments and events.	Explanation	
	Conversation	
	Didactical demonstration	
2. Probability function; conditional probability;	Interactive exposure	
independence of events	Explanation	
	Conversation	
	Didactical demonstration	
3. Sampling with/without replacement	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
4. Random variables; classical discrete	Interactive exposure	
probability distributions	Explanation	
	Conversation	
	Didactical demonstration	
5. Cumulative distribution function	Interactive exposure	

	Explanation
	Conversation
	Didactical demonstration
6. Probability density function; classical	Interactive exposure
continuous probability distributions	Explanation
	Conversation
	Didactical demonstration
7. Random vectors; joint cumulative distribution	Interactive exposure
function; joint density function	Explanation
	Conversation
	Didactical demonstration
8. Functions of random variables; operations with	Interactive exposure
random variables	Explanation
	Conversation
	Didactical demonstration
9. Numerical characteristics of random variables:	Interactive exposure
expectation, variance, moments	Explanation
1 , , ,	Conversation
	Didactical demonstration
10. Numerical characteristics of random variables:	Interactive exposure
covariance, correlation coefficient	Explanation
·····,···,····	Conversation
	Didactical demonstration
11. Moment generating function of a random	Interactive exposure
variable	Explanation
	Conversation
	Didactical demonstration
12. Sequences of random variables; types of	Interactive exposure
convergence; laws of large numbers	Explanation
	Conversation
	Didactical demonstration
13. Limit theorems	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
14. Review and preparation for the exam	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration

Bibliography

- Dekking, F. M.; Kraaikamp, C.; Lopuhaä, H. P.; Meester, L. E., *A modern introduction to probability and statistics. Understanding why and how.* Springer-Verlag, London, 2005
- Klenke, A., Probability Theory: A Comprehensive Course. Springer-Verlag, London, 2008
- Lisei, H., Probability Theory, Casa Cărții de Știință, Cluj-Napoca, 2004
- Morariu, C. O., *Probabilități și statistică aplicată*, Editura Universității "Transilvania", Brașov, 2010.
- Ross, S., A First Course in Probability, 9th edition, Pearson Education, 2014

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Combinatorics	Interactive exposure Explanation	

	Individual and group work	
12. Sequences of random variables	Interactive exposure	
1	Explanation	
	Conversation	
	Individual and group	
	work	
13. Laws of large numbers	Interactive exposure	
-	Explanation	
	Conversation	
	Individual and group	
	work	
14. Applications of limit theorems	Interactive exposure	
	Explanation	
	Conversation	
	Individual and group	
	work	

Bibliography

- Grimmett G.R., Stirzaker D.R., *One thousand exercises in probability*. Oxford University Press, Oxford, 2003.
- Lisei H., Grecksch, W., Iancu, M., *Probability: Theory, Examples, Problems, Simulations.* World Scientific Publishing, Singapore, 2020.
- Lisei, H., Micula, S., Soos, A., *Probability Theory trough Problems and Applications*, Cluj University Press, Cluj-Napoca, 2006.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 to acquire the basic principles from Probability Theory to be able to apply correctly the course concepts on various applications problem-solving 	Written exam	80%	
10.5 Seminar activities	► to be able to apply the course concepts to solve problems	Continuous observation during the semester, active participation in the seminars	20%	
10.6 Minimum performance standards				

> At least grade 5 (on a scale from 1 to 10) at the written exam.

Date	Signature of course coordinator	Signature of seminar coordinator	
22.04.2023	Assoc. Prof. PhD Habil. Hannelore Lisei	Assoc. Prof. PhD Habil. Hannelore Lisei	
Date of approval		Signature of the head of department	
		Prof. Dr. Andrei Mărcuş	