SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babeș Bolyai University, Cluj Napoca			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Mathematics			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Mathematics and Computer Science			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the dis	scipl	ine	Databases				
2.2 Course coordinator		Lect. PhD. Emilia-Loredana Pop					
2.3 Seminar coordinator		Lect. PhD. Emilia-Loredana Pop					
2.4. Year of study	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Compulsory
		Semester		evaluation		discipline	
2.8 Code of the		MLE5027					
discipline							

3. Total estimated time (hours/semester of didactic activities)

		· · · · · · · · · · · · · · · · · · ·			
3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:				·	hours
Learning using manual, course support, bibliography, course notes					21
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					10
Evaluations					8
Other activities:					
3.7 Total individual study hours		69			•
3.8 Total hours per semester		125			

5.8 Total hours per semester	123
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Lecture room with a video projector
5.2. for the seminar /lab activities	Lab room with SQL Server, Visual Studio

6. Specific competencies acquired

	C 5.1 Identifying basic concepts for data organization in databases
Professional competencies	C 5.2 Identifying and explaining basic models for data organization and management in databases
sion	C 5.3 Using methodologies and database design environments for specific problems
fes	C 5.4 Evaluating the quality of various Database Management Systems in terms of their structure,
Pro	functionality and extensibility
_ `	C 5.5 Developing projects involving databases
	CT1 - Applying organized and efficient work rules, responsible attitudes towards the didactic and
es _	scientific field, in order to creatively capitalize on one's own potential, while respecting the
rsal ncio	professional ethics principles and rules
svel	CT3 - Use efficient methods and techniques for learning, knowledge gaining, researching and
Transversal competencies	developing abilities for knowledge capitalization and accommodation to the requirements of a
Tr 00	dynamic society

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To get acquainted with the fundamental concepts concerning databasesTo gain a thorough understanding of the relational data model
7.2 Specific objective of the discipline	• To manage (create, modify, remove) relational databases in SQL Server
	• To analyze data using complex SQL queries
	To optimize SQL queries

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Databases	Interactive presentation	
	Conversation	
	Examples	
	Explanation	
2. The Relational Data Model	Interactive presentation	
	Conversation	
	Examples	
	Explanation	
3. SQL Queries	Interactive presentation	
	Conversation	
	Examples	
	Explanation	
4. Functional Dependencies	Interactive presentation	
	Conversation	
	Examples	
	Explanation	
5. Normal Forms	Interactive presentation	

	Conversation
	Examples
	Explanation
6. The Relational Algebra	Interactive presentation
	Conversation
	Examples
	Explanation
7. The Physical Structure of Databases	Interactive presentation
· ·	Conversation
	Examples
	Explanation
8-9. Indexes. Trees. Hash files	Interactive presentation
	Conversation
	Examples
	Explanation
10. Evaluating the Relational Algebra Operators	Interactive presentation
To Demonstration and the second operations	Conversation
	Examples
	Explanation
11. Conceptual Modeling	Interactive presentation
The conceptual modeling	Conversation
	Examples
	Explanation
12. Object Oriented Databases, Data Streams	Interactive presentation
12. Object Offented Databases, Data Streams	Conversation
	Examples
	Explanation
13. Transactions, Concurrency Control	Interactive presentation
15. Transactions, Concurrency Control	Conversation
	Examples
	Explanation
14. Problems	*
	Interactive presentation Conversation
	Examples
	Explanation

Bibliography

ABADI, D.J., CARNEY, D., CETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., STONEBRAKER, M., TATBUL, N., ZDONIK, S.B., Aurora: A New Model and Architecture for Data Stream Management, The VLDB Journal, 12(2):120–139, 2003

ARASU, A., BABCOCK, B., BABU, S., DATAR, M., ITO, K., MOTWANI, R., NISHIZAWA, I., SRIVASTAVA, U., THOMAS, D., VARMA, R., WIDOM, J., STREAM: The Stanford Stream Data Manager, IEEE Data Engineering Bulletin 26(1): 19-26, 2003

ARASU, A., CHERNIACK, M., GALVEZ, E., MAIER, D., MASKEY, A.S., RYVKINA, E., STONEBREAKER, M., TIBBETTS, R., Linear Road: A Stream Data Management Benchmark, Proceedings of The Thirtieth International Conference on Very Large Data Bases (VLDB 2004), 480-491, 2004

BAGUI, S., EARP, R., Database Design Using Entity-Relationship Diagrams (Foundations of Database

Design) – 2nd edition, CRC Press, Taylor & Francis Group, 2011

CAPTAIN, F.A., Six-Step Relational Database Design: A step by step approach to relational database design and development -2^{nd} edition, Createspace Independent Publishing Platform, 2013

CHURCHER, C., Beginning Database Design – From Novice to Professional, Apress, 2007

CORONEL, C., MORRIS, S., Database Systems Design, Implementation, and Management, Cengage Learning, 2016

DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003

DATE, C.J., Database Design and Relational Theory: Normal Forms and All That Jazz – 2nd edition, Apress, 2019

DAVIDSON, L., MOSS, J., Pro SQL Server Relational Database Design and Implementation, Best Practices for Scalability and Performance. Apress, 2021

DEBARROS, A., Practical SQL: A Beginner's Guide to Storytelling with Data, Estadisticos e-Books & Paper, 2018

GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book (2nd Edition), Pearson Education, 2009

GRIPAY, Y., LAFOREST, F., LESUEUR, F., LUMINEAU, N., PETIT, J.-M., SCUTURICI, V.-M., SEBAHI, S., SURDU, S., ColisTrack: Testbed for a Pervasive Environment Management System, Proceedings of The 15th International Conference on Extending Database Technology (EDBT 2012), 574-577, 2012

HALPIN, T. A., MORGAN, T., Information modeling and Relational Databases – 2nd edition, Burlington, MA: Morgan Kaufmann Publishers, 2008

KNUTH, D.E., Tratat de programare a calculatoarelor. Sortare și căutare, Editura Tehnică, București, 1976

LEVENE, M., LOIZOU, G., A Guided Tour of Relational Databases and Beyond, Springer, 1999

LIU, L., OZSU, M.T., Encyclopedia of Database Systems, Springer, 2009

OPPEL, A.J., Databases A Beginner's Guide, McGraw-Hill Education, 2009

PETKOVIC, D., Microsoft SQL Server 2019: A Beginner's Guide – 7th edition, McGraw-Hill, 2019

RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (3rd Edition), McGraw-Hill, 2002

SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts (6th Edition), McGraw-Hill, 2011

SHIELD, W., SQL QuickStart Guide: The Simplified Beginner's Guide to Managing, Analyzing, and Manipulating Data with SQL, ClydeBank Media, 2019

ŢÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, versiunea 2013-2014

ŢÂMBULEA, L., Baze de date, Litografiat, Cluj-Napoca, 2003				
ULLMAN, J., WIDOM, J., A I	First Course in	Database Systems,		
http://infolab.stanford.edu/~ullman/fcdb.html		, , , , , , , , , , , , , , , , , , ,		
*** Azure Stream Analytics - technical documentatio	n, https://azure.microsoft.o	com/en-us/services/stream-		
analytics/				
8.2 Seminar / laboratory	Teaching methods	Remarks		
Seminar	Problems solving			
1. SQL - Data Definition Language	Conversation			
	Problems			
	Examples			
	Explanation			
2. SQL - Data Manipulation Language	Conversation			
	Problems			
	Examples			
	Explanation			
3. Stored Procedures, Dynamic SQL, Cursors	Conversation			
	Problems			
	Examples			
	Explanation			
4. Functions, Views, Triggers	Conversation			
	Problems			
	Examples			
	Explanation			
5. Indexes (I)	Conversation			
	Problems			
	Examples			
	Explanation			
6. Indexes (II)	Conversation			
	Problems			
	Examples			
7. Problems	Explanation Conversation			
7. 1 1 ODICIIIS	Problems			
	Examples			
	Explanation			
Laboratory	Teaching programs in			
	which real life			
	problems can be solved			
1-2. Database Design	Conversation			
8	Problems			
	Examples			
	Explanation			
3-4. SQL Queries	Conversation			
	Problems			
	Examples			
	Explanation			
5. Altering the Database	Conversation			
	Problems			
	Examples			

	Explanation
6-7. Indexes	Conversation
	Problems
	Examples
	Explanation
Bibliography	
Course bibliography	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is oriented towards the problems a graduate student should solve at his / her future. workplace. The acquired knowledge is considered as mandatory by software companies.
- The course is part of the academic curriculum of all major universities in Romania and abroad.
- The course structure follows the IEEE and ACM Recommendations concerning the Computer Science curriculum.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 to know and apply the concepts described at the course to solve Databases problems 	• written exam	50%	
10.5 Seminar/lab activities	• to be able to apply the concepts from the	• lab evaluation	25%	
	course and seminar to design / alter a database, to analyze data with SQL queries, to optimize queries	• practical exam	25%	
10.6 Minimum performance standards				

To pass, a student must get a grade of at least 5 (on a scale of 1 to 10) on the written exam, practical exam and lab evaluation.

To attend the exam, a student must have at least 6 laboratory attendances and at least 5 seminar attendances, according to the Computer Science Department's decision: http://www.cs.ubbcluj.ro/wpcontent/uploads/Hotarare-CDI-15.03.2017.pdf.

Date	Signature of course coordinator	Signature of seminar coordinator
24.04.2023	Lect. PhD. Emilia-Loredana Pop	Lect. PhD. Emilia-Loredana Pop

Date of approval

Signature of the head of department

Prof. PhD. Laura Dioșan