SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science – Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Mathematics - Computer Science

2. Information regarding the discipline

2.1 Name of the disc	cipline (en)	Da	ata structures			
(ro)		St	Structuri de date			
2.2 Course coordina	tor	Le	Lect. PhD. Miholca Diana-Lucia			
2.3 Seminar coordinator		Lect. PhD. Miholca Diana-Lucia				
2.4. Year of study 1	2.5	2	2.6. Type of	С	2.7 Type of	Compulsory
	Semester		evaluation		discipline	
2.8 Code of the	MLE5105					
discipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 LP
				seminar/laboratory	1 S
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:			•		hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					4
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					5
Evaluations				5	
Other activities:					
3.7 Total individual study hours		94			1
3.8 Total hours per semester		150			

3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Computer programming and programming languages
4.2. competencies	Medium programming skills

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

<u>o pre</u>	ine competencies acquirea
	C4.1. Definition of concepts and basic principles of computer science, and their mathematical
nal cies	models and theories.
Professional competencies	C4.3. Identification of adequate models and methods for solving real problems
Pre	C4.5. Adoption of formal models in specific applications from different domains
	CT1. Apply rules to: organized and efficient work, responsibilities of didactic and scientific
	activities and creative capitalization of own potential, while respecting principles and rules for
S	professional ethics
Transversal competencies	CT3. Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Study of data structures that can be used to implement abstract data types (arrays, linked lists, heaps, hash tables, binary trees).
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure libraries.

8. Content		
8.1 Course	Teaching methods	Remarks
1. Data structures. Abstract Data Types.	- Exposure	
Algorithm analysis	- Description	
Abstract Data Types and Data	- Examples	
Structures	- Didactical	
Pseudocode conventions	demonstration	
Complexities		

2. Arrays. Iterators	- Exposure
Dynamic array	- Description
Amortized complexity analysis	- Conversation
• Interface of an iterator	- Didactical
	demonstration
3. Linked Lists	- Exposure
• Singly linked list: representation and	- Description - Conversation
operations	- Didactical
• Doubly linked list: representation and	- Didactical demonstration
operations	- Case study
Iterator for linked lists	
4. Abstract Data Types	- Exposure
• ADT Set: description, domain,	- Description
interface and possible representations	- Conversation
• ADT Map: description, domain,	- Didactical demonstration
interface and possible representations	demonstration
• ADT Matrix: description, domain,	
interface and possible representations	
5. Linked Lists II	- Exposure
• Sorted linked lists: representation and	- Description
operations	- Conversation
• Linked lists on arrays: representation	- Didactical
and operations	demonstration
6. Abstract Data Types II	- Exposure
• ADT List: description, domain,	- Description
interface and possible representations	- Conversation
• ADT Stack: description, domain,	- Didactical
interface and possible representations	demonstration Case studies
• ADT Queue: description, domain,	- Case studies
interface and possible representations	
7. Hash Table	- Exposure
Direct address tables	- Description
• Hash tables: description, properties	- Conversation
Collision resolution through separate	- Didactical
chaining	demonstration
8. Hash Table II	- Exposure
Collision resolution through coalesced	- Description
chaining	- Conversation
Collision resolution through open	- Didactical
addressing	demonstration
9. Trees. Binary Trees	- Exposure
Concepts related to trees	- Description
Applications of trees	- Conversation
Possible representations	- Didactical
• Tree traversals	demonstration
 Description and properties of binary 	
trees	
• Domain and interface of ADT Binary	
Tree	
10. Binary Trees II	- Exposure

Possible representations of ADT	- Description
Binary Tree	- Conversation
• Binary Tree traversals: recursive/non	- Didactical
recursive algorithms.	demonstration
11. Binary Heap	- Exposure
• Definition, representations, specific	- Description
operations	- Conversation
• HeapSort	- Didactical
I	demonstration
	- Case studies
12. ADT Priority Queue	- Exposure
• Description, domain and interface	- Description
Possible representations	- Conversation
• Implementation on heap	- Didactical
1 1	demonstration
13. Applications of the studied DS	- Conversation
	- Debate
14. Evaluation	
1	

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Third Edition, 2010
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. Narasimha Karumanchi, Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition, 2016
- 5. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

8.2 Laboratory	Teaching methods	Remarks
		Laboratory is structured as 2 hour classes every second week. Laboratory problems assigned at a lab have to be presented in the next lab (excepting the first lab assignemnt). Every laboratory focuses on a given data structure. Students will receive a container (ADT) that has to be implemented using the given data structure.
Lab 1: Discussion about solving lab problems.	 Exposure Examples Conversation 	
Lab 2 Dynamic array	ExposureExamplesConversation	To be presented at Lab 3
Lab 3: Linked lists with dynamic allocation	- Exposure - Examples	

	- Conversation
Lab 4: Linked lists on arrays	- Exposure
	- Examples
	- Conversation
Lab 5: Hash Table	- Exposure
	- Examples
	- Conversation
Lab 6: Binary Search Tree	- Exposure
	- Examples
	- Conversation
Lab 7: Presentation of problem from Lab 6.	- Exposure
	- Examples
	- Conversation

Bibliography

- 6. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 7. Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Third Edition, 2010
- 8. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 9. Narasimha Karumanchi, Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition, 2016
- 10. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

8.3 Seminar	Teaching methods	Remarks
		Seminar is structured as 2 hour classes every second week.
 ADT Bag with generic elements. Representations and implementation on an array. Iterator for ADT Bag. 	 Exposure Conversation Examples Debate 	
2. Complexities	 Exposure Conversation Examples Debate 	
 Bucket sort, Lexicographic sort, radix sort. Merging two singly linked lists. 	 Exposure Conversation Examples Debate 	
 Sorted Multi Map – representation and implementation on a singly linked list. 	 Exposure Conversation Examples Debate 	
 Hash tables. Collision resolution through coalesced chaining 	 Exposure Conversation Examples Debate 	
6. Binary trees.	 Exposure Conversation Examples Debate 	

7. Problems solved with heaps.	 Exposure Conversation Examples Debate 	
--------------------------------	--	--

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Third Edition, 2010
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. Narasimha Karumanchi, Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition, 2016
- 5. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is consistent with the content of the Data structures courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 Correctness and completeness of the assimilated knowledge Knowledge of applying the course concepts 	Written evaluation (in week 14): written exam	70%
10.5 Lab activities	 C++ implementation of the concepts and algorithms presented at the lectures Lab assignment documentation Respecting the deadlines for lab presentation 	Correctness of the implementation and documentation (representation, specifications, algorithms, complexities).	30%

10. Evaluation

10.6 Minimum performance standards

Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.

- For participating at the written exam, a student must have at least 6 lab attendances and 5 seminar attendances.
- > For successfully passing the examination, a student must have at least 5 as a final grade.

Date

Signature of course coordinator

Signature of seminar coordinator

27.04.2023

Lect. PhD. Miholca Diana-Lucia

Lect. PhD. Miholca Diana-Lucia

Date of approval

Signature of the head of department Prof. dr. Laura Dioşan

.....