SYLLABUS

1.1 Higher education	Babeş-Bolyai University		
institution			
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Department of Mathematics		
1.4 Field of study	Mathematics		
1.5 Study cycle	Master		
1.6 Study programme /	Advanced Mathematics		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline A			Ар	plied Statistics			
2.2 Course coordinator				Assoc. Prof. PhD Habil. Hannelore Lisei			
2.3 Seminar coordinator				Assoc. Prof. PhD	Habil. Ha	annelore Lisei	
2.4. Year of	2	2.5	4	2.6. Type of	E	2.7 Type of	Optional
study		Semester		evaluation		discipline	
2.8. Code of the discipline		Μ	ME3161				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bib	liography, course notes	5		60
Additional documentation (in libraries	, on	electronic platforms, fie	eld do	cumentation)	50
Preparation for seminars/labs, homework, papers, portfolios, and essays					
Tutorship					
Evaluations					20
Other activities:					0
3.7 Total individual study hours		189			
3.8 Total hours per semester		225			
3.9 Number of ECTS credits		9			

4. Prerequisites (if necessary)

4.1. curriculum	•	Mathematical Analysis, Probability Theory, Statistics
4.2. competencies	٠	Logical thinking

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector

5.2. for the seminar /lab	Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

	-	
onal	ncies	Identifying the models and adequate methods for solving problems
Professio	competer	Ability to understand and manipulate advanced concepts, results, and theories in the fields of mathematics.
IJ	ies	Ability to use acquired and complementary knowledge to prepare a PhD in Mathematics, Applied Mathematics, or other scientific fields that use mathematical methods.
Transversa	competenc	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The course aims to deepen the notions of Statistics, followed by their applicative side and their practical interpretation.
7.2 Specific objective of the	Predictive models and their performance
discipline	Methods of statistical testing
	Application of Monte Carlo methods
	Regression models

8. Content

8.1 Course	Teaching methods	Remarks
C1. Review - basic notions of Probability Theory	Lecture, description,	
	explanation	
C2. Review - basic notions of Statistics	Exposure, description,	
	explanation, examples	
C3. Methods in Inferential Statistics	Exposure, description,	
	explanation, examples	
C4. Sampling distributions	Exposure, description,	
	explanation	
C5. Inference for distributions	Exposure, description,	
	explanation, examples	
C6. Nonparametric techniques I	Exposure, description,	
	explanation, proof	
C7. Nonparametric techniques II	Exposure, description,	
	explanation, proof,	
	examples	
C8. Correlation Analysis	Exposure, description,	
	explanation, proof	
C9. Regression models I	Exposure, description,	
	explanation	
C10. Regression models II	Exposure, description,	
	explanation	
C11. Statistical performance	Exposure, description,	

	explanation	
C12. Statistical evaluation - overview	Exposure, description,	
	explanation	

Bibliography

DasGupta, A., Asymptotic Theory of Statistics and Probability, New York, Springer Science+Business Media, LLC, 2008.

Dekking F.M., A modern introduction to probability and statistics: understanding why and how, London, Springer, 2005.

Lisei, H., Probability Theory, Casa Cărții de Știință, Cluj-Napoca, 2004.

Lisei, H., Grecksch, W., Iancu, M., Probability: Theory, Examples, Problems, Simulations. World Scientific Publishing, Singapore, 2020.

Morariu, C. O., Probabilități și statistică aplicată, Editura Universității "Transilvania", Brașov, 2010.

Shao, J., Mathematical statistics, New York, Springer, 2003.

8.2 Seminar / laboratory	Teaching methods	Remarks
S1. Solving problems from Probability Theory and	Presentation,	The seminar is structured
Statistics	discussion	as 2 hours classes every
		second week
S2. Mathematical methods for generating random data	Presentation, individual	
	work	
S3. Solving problems using Inferential Statistics	Presentation, individual	
	work	
S4. Regression models	Discussion, group-	
	based work, modelling	
S5. Bootstrap methods	Discussion, group-	
	based work, modelling	
S6. Project presentations	Discussion, group-	
	based work, modelling,	
	simulation	

Bibliography

DasGupta, A., Asymptotic Theory of Statistics and Probability, New York, Springer Science+Business Media, LLC, 2008

Dekking F. M., A modern introduction to probability and statistics: understanding why and how, London, Springer, 2005.

Lisei, H., Probability Theory, Casa Cărții de Știință, Cluj-Napoca, 2004.

Lisei, H., Grecksch, W., Iancu, M., Probability: Theory, Examples, Problems, Simulations. World Scientific Publishing, Singapore, 2020.

Moore, D. S., The basic practice of statistics, New York, W. H. Freeman, 2007.

Morariu, C. O., Probabilități și statistică aplicată, Editura Universității "Transilvania", Brașov, 2010.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations, and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where advanced mathematics and its applications play an essential role.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Knowledge of the main	Final exam	65%			
	concepts presented in the					
	course					
10.5 Seminar/lab activities	To be able to solve	Continuous observation	35%			
	specific problems using	during the semester, active				
	statistical inference	participation at the seminars,				
		project presentation				
10.6 Minimum performance standards						
At least grade 5 (on a scale of 1 to 10) at the written exam. The student should be able to perform specific						
reasoning, to use statistical inference and its predictive methods.						

Date	Signature of course coordinator	Signature of seminar coordinator
04.04.2024	Assoc. Prof. PhD Habil. Hannelore Lisei	Assoc. Prof. PhD Habil. Hannelore Lisei

Date of approval

Signature of the head of department

Prof. PhD Andrei Mărcuş