SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	cipline	Multi-valued Analysis and Applications					
2.2 Course coor	rdina	ator	Prof.dr. Petruşel Adrian					
2.3 Seminar coordinator Prof.dr. Petruşel Adrian								
2.4. Year of	II	2.5	3	2.6. Type of	VP	2.7 Type of	optional	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					32
Additional documentation (in libraries, on electronic platforms, field documentation)					23
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship				21	
Evaluations				8	
Other activities:				17	
2.7 Total in dividual study house		122			

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Nonlinear Applied Analysis MME3024
4.2. competencies	 Topology, Functional Analysis

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	Video projector
activities	

6. Specific competencies acquired

Professional competencies	 Ability to understand and manipulate concepts, results and advanced mathematical theories. Ability to model and analyze from the mathematical point of view some concepts and ideas from economics, biology and engineering. Ability to use the scientific language and to write scientific reports and papers. Acquiring specific methods of nonlinear analysis theory (mainly from fixed point theory) and its applications
Transversal competencies	 Ability to inform themselves, to work independently or in a team in order to realize studies and to solve complex problems. Ability for continuous self-perfecting and study. Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics and Applied Mathematics.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	to present the basic concepts and results in multi-valued analysis and fixed point theory for multi-valued operators and its applications to differential and integral inclusions
7.2 Specific objective of the discipline	 basic concepts and tools of metric spaces and Hausdorff-Pompeiu metric theory main concepts concerning multi-valued operator theory main concepts and results of metric fixed point theory, coincidence point theory and coupled fixed point theory for multi-valued operators applications of the fixed point theory for multi-valued operators to differential and integral inclusions

8. Content

8.1 Course	Teaching methods	Remarks
1. Functionals on the family of all subsets of a metric space: gap functional, excess functional, Hausdorff-Pompeiu functional, diameter functional	Expositions : description, explanation, class lectures, dialog-based lectures, lectures	
	with demonstrations,	
	introductive lectures,	
	synthesis lectures.	
	Conversations: debate, dialog, introductive conversations, conversations for knowledge consolidation, conversations to systematize and synthesize knowledge	
	Use of problems: use of	
	problem questions, problems	
	and problem situations.	
2. Hausdorff-Pompeiu functional: basic properties	the same as before	
3. Continuity notions for multi-valued operators	the same as before	

4. Fixed point theorems for multi-valued operators:	the same as before
the multi-valued contraction principle	
5. Generalizations of Nadler's Contraction Principle	the same as before
6. Weakly Picard operator theory. Examples	the same as before
7. Qualitative properties of the fixed point set	the same as before
8. Coincidence point theory for multi-valued	the same as before
operators	
9. Coupled fixed point theorems for multi-valued	the same as before
operators	
10. Applications of the multi-valued analysis	the same as before
11. Open problems in the theory of multi-valued	the same as before
operators	

Bibliography

- 1. J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhauser, Basel, 1990.
- 2. S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I and II, Kluwer Acad. Publ., Dordrecht, 1997 and 1999.
- 3. I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Presa Universitara Clujeana, 2008.
- 4. A. Granas, J. Dugundji, Fixed Point Theory, Springer, 2003.
- 5. A. Petruşel, Gh. Mot, G. Petruşel, Topics in Nonlinear Analysis and Applications to Mathematical Economics, House of the Book of Science, Cluj-Napoca, 2007.

8.2 Seminar / laboratory	Teaching methods	Remarks
Examples and exercises concerning gap functional, excess functional, Hausdorff-Pompeiu functional, diameter functional	Conversations: debate, dialog, introductive conversations, conversations for knowledge consolidation, conversations to systematize and synthesize knowledge Use of problems: use of problem questions, problems and problem situations	
Examples and exercises concerning Hausdorff- Pompeiu functional	the same as before	
3. Examples and exercises concerning Hausdorff- Pompeiu functional (II)	the same as before	
Examples and exercises concerning continuity notions for multi-valued operators	the same as before	
5. Examples and exercises concerning continuity notions for multi-valued operators	the same as before	
6. Examples and exercises concerning the multi- valued contraction principle	the same as before	
7. Examples and exercises concerning generalizations8. Of the multi-valued contraction principle	the same as before	
Examples and exercises concerning weakly Picard operators	the same as before	
10. Examples and exercises concerning coincidence point theorems	the same as before	
11. Examples and exercises concerning coupled fixed point theorems	the same as before	

12. Examples and exercises concerning applications of	the same as before	
the fixed point theory for multi-valued operators		
13. Examples and exercises concerning applications of	the same as before	
the fixed point theory for multi-valued operators		
(II)		

Bibliography

- 1. K. Deimling, Multivalued Differential Equations, W. de Gruyter, Basel, 1992.
- 2. L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Publ., Dordrecht, 1999.
- 3. A. Petruşel, Operatorial Inclusions, House of the Book of Science Cluj-Napoca, 2003
- 4. A. Granas, J. Dugundji, Fixed Point Theory, Springer, 2003.
- 5. I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Presa Universitara Clujeana, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The syllabus of this course is focused on the multivalued operator theory, as a basis for a good research activity through the Doctoral School in Mathematics.

Moreover, the course propose the following three important directions:

- 1. the understanding of the main concepts in multi-valued analysis theory in metric spaces;
- 2. the understanding of the main concepts and approaches in the analysis of multi-valued operators;
- 3. the understanding of the fixed point theory for multi-valued operators;
- 4. to apply fixed point theory for multi-valued operators to integral and differential inclusions;

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where nonlinear analysis plays an essential role. This discipline is useful in preparing future teachers and researchers in pure and applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Knowledge of concepts	Middle term written test	40%
	and basic results		
	Ability to justify by proofs	Final Written Test	40%
	theoretical results		
10.5 Seminar/lab activities	Ability to apply concepts	Written and Oral Report	20%
	and results acquired in the		
	course in nonlinear		
	analysis theory		
	There are valid the official		
	rules of the faculty		
	concerning the attendance		
	of students to teaching		
	activities.		
10.6 Minimum performance standards			

Successful passing of the exam is conditioned by the final grade that has to be at least 5.

All university official rules with respect to students attendance of academic activities, as well as to cheating and plagiarism, are valid and enforced.

Date Signature of course coordinator Signature of seminar coordinator

April 27, 2023 Professor Adrian Petruşel, Ph.D.

Date of approval Signature of the head of department

April 28, 2023 Professor Andrei Mărcuș, Ph.D.