SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Master of Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Qualitative theory of differential equations							
2.2 Course coordinator Conf. dr. Adriana Buică							
2.3 Seminar coo	ordi	nator		Conf. dr. Adriana Bı	uică		
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	DF
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					33
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					30
Evaluations					20
Other activities:					-
3.7 Total individual study hours 133					

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis; Differential Equations
4.2. competencies	Logical thinking, as well mathematical notions and properties from
	the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	 blackboard
5.2. for the seminar /lab	 blackboard
activities	

6. Specific competencies acquired

Professional	competencies	•	Ability to understand and manipulate advanced concepts, results and theories in the fields of mathematics.	
Transversal	competencies	•	Ability to inform themselves, to work independently or in a team in order to realize studies and to solve complex problems. Ability for continuous self-perfecting and study.	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To be familiar with the important problems that appear when studying the existence and stability of periodic solutions for periodic differential systems	•
7.2 Specific objective of the discipline	 To be able to prove the main results To be able to apply the main results in examples and physical models To have an intuition on the variety of problems that can appear in 	•
	studying the differential equations	

8. Content

8.1 Course	Teaching methods	Remarks
1. Linear differential systems. General theory.	Interactive exposure	
	Explanation	
	Conversation	
	Demonstration	
2. Linear differential systems with constant	Interactive exposure	
coefficients. The exponential matrix for a	Explanation	
diagonalizable matrix.	Conversation	
	Demonstration	
3. Linear differential systems with constant	Interactive exposure	
coefficients. The exponential matrix for a	Explanation	
deffective matrix.	Conversation	
	Demonstration	
4. The asymptotic behaviour of the solutions of	Interactive exposure	
linear systems with constant coefficients.	Explanation	
Stable, unstable, center manifolds.	Conversation	
	Demonstration	
5. The fundamental theorems for nonlinear	Interactive exposure	
systems: the existence and uniqueness theorem	Explanation	
	Conversation	
	Demonstration	
6. The fundamental theorems for nonlinear	Interactive exposure	
systems: maximal interval of existence	Explanation	

	Conversation
	Demonstration
	Interactive exposure
7. The fundamental theorems for nonlinear	Explanation
systems: continuity and differentiability with	Conversation
respect to parameters and initial data	Demonstration
8. Stability of equilibria of nonlinear autonomous	Interactive exposure
systems by linearization	Explanation
	Conversation
	Demonstration
9. Stability of equilibria of nonlinear autonomous	Interactive exposure
systems by the Lyapunov functions method	Explanation
	Conversation
	Demonstration
10. Stability of nonautonomous linear differential	Interactive exposure
systems	Explanation
	Conversation
	Demonstration
11. Stability of periodic linear differential systems.	Interactive exposure
Floquet theory I	Explanation
ı y	Conversation
	Demonstration
12. Stability of periodic linear differential systems.	Interactive exposure
Floquet theory II	Explanation
	Conversation
	Demonstration
13. Periodic solutions of linear periodic systems	Interactive exposure
13. Terrodic solutions of finedi periodic systems	Explanation
	Conversation
	Demonstration
14. Stability of periodic solutions of periodic	
nonlinear systems	Interactive exposure
nommear systems	Explanation Conversation
D'11' 1	Demonstration

Bibliography

- 1. A. Buică, Periodic solutions for nonlinear systems, Cluj University Press, 2006.
- 2. A. Buică, Lecture Notes uploaded in Teams.
- 3. C. Chicone, Ordinary differential equations with applications, Springer, 2006.
- 4. E.A. Coddington, N. Levinson, Theory of ordinary differential equations, 1959.
- 5. P. Hartman, Ordinary differential equations, SIAM, 2002.
- 6. L. Perko, Differential equations and dynamical systems, Springer, 2001.
- 7. M. Viana, J.M Espinar, Differential equations: a dynamical systems approach to theory and practice, American Mathematical Society, 2021.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
2. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
3. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
4. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
5. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
	Explanation	

6. Various problems and exercises on the theme	Conversation
of the same week lecture.	
7. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
8. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
9. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
10. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
11. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
12. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
13. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
14. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation

Bibliography

- 1. A. Buică, Periodic solutions for nonlinear systems, Cluj University Press, 2006.
- 2. A. Buică, Lecture Notes uploaded in Teams.
- 3. C. Chicone, Ordinary differential equations with applications, Springer, 2006.
- 4. E.A. Coddington, N. Levinson, Theory of ordinary differential equations, 1959.
- 5. P. Hartman, Ordinary differential equations, SIAM, 2002.
- 6. L. Perko, Differential equations and dynamical systems, Springer, 2001.
- 7. M. Viana, J.M Espinar, Differential equations: a dynamical systems approach to theory and practice, American Mathematical Society, 2021.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is synchronized with the curriculum of most of the important universities from our country and from abroad where the applied mathematics plays an important role.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	To know the notions and their properties by examples or counterexamples. To be able to prove the main theoretical results.	Exam	50%
	To develop a specific subject by reading the bibliography.	Report	20%
10.5 Seminar/lab activities	• Solving problems skills	Evaluation of the homeworks	30%
	• Active participation in the classroom		
10.6 Minimum performance standards			
➤ The minimum passing grade is 5.			

Date Signature of course coordinator Signature of seminar coordinator

20-04-2024 Conf. dr. Adriana Buică Conf. dr. Adriana Buică

Date of approval Signature of the head of department 20-04-2024 Prof. dr. Andrei Mărcuș