SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Software Engineering

2. Information regarding the discipline

2.1 Name of the discipline Behavior Modeling of Software Systems								
2.2 Course coordinator Lect. dr. loan Lazar								
2.3 Seminar coordinator Lect. dr. loan Lazar								
2.4. Year of	1	2.5	2	2.6. Type of E 2.7 Type of Optional				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	2	3.3	1
		course		seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5	24	3.6	12
		course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					8
Additional documentation (in libraries, on electronic platforms, field documentation)					7
Preparation for seminars/labs, homework, papers, portfolios and essays					8
Tutorship					2
Evaluations					8
Other activities:					
0 = m · 1 · 1 · 1 · 1 · 1		2.2			

3.7 Total individual study hours	33
3.8 Total hours per semester	75
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Programming Fundamentals		
4.2. competencies	 Good programming skills in at least one of the languages Java, C# 		

5. Conditions (if necessary)

Specific competencies acquired

Prof	C 4.3 Identify models and methods adequate to real life problem solving
essio nal	C 2.1 Identify adequate software systems development methodologies
com pete ncies	C 1.1 Proper description of programming paradigms and language specific mechanisms, and identification of semantical an syntactical differences
Tran svers al com	 CT1 Apply organized and efficient work rules and responsible attitude towards didactical and research field, in order to creatively use work potential; respect professional ethical principles CT3 Use efficient methods and techniques for: learning, information search, research and development of capacities to adapt to the requirements of a dynamic society and to
pete ncies	communicate in an international language

7. Objectives of the discipline (outcome of the acquired competencies)

	Enhance the students understanding of behavior modeling concepts through a practical and pragmatic approach
7.1 General objective of the discipline	Provide the students with an environment in which they can explore the usage and usefulness of behavior modeling concepts in various business scenarios
	Induce a realistic and industry driven view of software design concepts such as design patterns and their inherent benefits
7.2 Specific	Give students the ability to explore various object oriented programming languages
objective of the	Improve the students abilities to tackle business requirements
discipline	Enhance the students understanding of state machines, activities
	Provide students with insights into the way of working towards achieving high quality
	software through skilled trainers from the IT industry

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to DSML	Exposure:	
Textual notations	description,	
	explanation,	
	examples, discussion	
	of case studies	
2. Introduction to DSML	Exposure:	

Graphical notations	description,
1	explanation,
	examples, discussion
	of case studies
3. Model Transformations in the Context of	Exposure:
MDA/UML	description,
MDA, UML	explanation,
• M2T, M2M	examples, discussion
	of case studies
4. Service Component Models	Exposure:
Pltaform specific frameworks: iPOJO, SCA	description,
UML: deployment diagrams, composite	explanation,
structure diagrams	examples, discussion
	of case studies
5. Service oriented architecture Modelling Language	Exposure:
(SoaML)	description,
SoaML specification	explanation,
ModelPro/MagicDraw frameworks	examples, discussion
	of case studies
6. Business Processes	Exposure:
Business Process Modelling Notation (BPMN)	description,
Workflow Patterns	explanation,
	examples, discussion
	of case studies
7. Business Processes	Exposure:
Workflow Patterns	description,
	explanation,
	examples, discussion
	of case studies
8. Foundational UML	Exposure:
Abstract Syntax and Foundational Model	description,
Library	explanation,
Java to UML activity mapping	examples, discussion
	of case studies
9. Action Language for Foundational UML (Alf)	Exposure:
	description,
	explanation,
	examples, discussion
	of case studies
11. Modeling user interface navigation using state	Exposure:
machines	description,
Platform specific frameworks: Grails and JBoss	explanation,
Seam	examples, discussion
UML: state machine diagrams	of case studies
12. Capturing requirements with Business Motivation	Exposure:
Model	description,

• BMM	explanation,
From BMM to SOA	examples, discussion
	of case studies
13. Executable Use Cases	Exposure:
	description,
	explanation,
	examples, discussion
	of case studies

14. Review

Bibliography

[Ambler04] Ambler, S.W. The Object Primer: Agile Model-Driven Development with UML 2.0. Cambridge University Press, 2004.

[Fowler99] Fowler, M. Analysis Patterns - Reusable Object Models. Addison-Wesley, 1997.

[Evans03] Evans, E. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley, 2003.

[OMG03] OMG. MDA Guide Version 1.0.1. Object Management Group, 2003.

http://www.omg.org/docs/omg/03-06-01.pdf

[OMG06] OMG. Business Process Modeling Notation Specification, V1.0. Object Management Group, 2006. http://www.bpmn.org/

[WPI06] Workflow Patterns Initiative. Control-Flow, Data, Resource, and Exception Handling Patterns.

Workflow Patterns Home Page, 2006. http://www.workflowpatterns.com/

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Introduction to DSML	Dialogue, debate,	
	case studies,	
	examples, proofs	
2. Introduction to DSML	Dialogue, debate,	
	case studies,	
	examples, proofs	
3. Model Transformations in the Context of	Dialogue, debate,	
MDA/UML	case studies,	
	examples, proofs	
4. Service Component Models	Dialogue, debate,	
	case studies,	
	examples, proofs	
5. Service oriented architecture Modelling Language	Dialogue, debate,	
(SoaML)	case studies,	
	examples, proofs	
6. Business Processes	Dialogue, debate,	
	case studies,	
	examples, proofs	
7 Workflow Patterns		

7. Workflow Patterns

- 8. Foundational UML
- 9. Action Language for Foundational UML (Alf)
- 11. Modeling user interface navigation using state machines
- 12. Capturing requirements with Business Motivation Model

13. Executable Use Cases

14. Review

Bibliography

AndroMDA. Business Process Management for Struts Cartridge. 2006.

http://galaxy.andromda.org/docs/andromda-bpm4struts-cartridge/index.html

Erich Gamma et al. Design Patterns: Elements of Reusable Object Oriented Software. Addison Wesley, 1995.

Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Patterns, and Plug-Ins. Addison Wesley, 2003.

Martin Fowler. Patterns of Enterprise Application Architecture. Addison Wesley, 2002.

Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language, Third Edition. Addison Wesley, 2003.

Rod Johnson et al. Spring 2.0 Reference Documentation. 2006. http://www.springframework.org/

Michael Mahemoff. Ajax Design Patterns. O'Reilly, 2006.

Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled: Principles of Model-Driven Architecture. Addison Wesley, 2004.

Object Management Group. MDA Guide Version 1.0.1. 2003. http://www.omg.org/docs/omg/03-06-01.pdf Object Management Group. MOF 2.0 Query/Views/Transformations RFP. 2004.

http://www.omg.org/cgi-bin/apps/doc?ad/02-04-10.pdf

Object Management Group. UML 2.0 OCL Specification. 2003.

http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf

Object Management Group. UML 2.0 Superstructure. 2004.

http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is considered the software companies as important for average programming skills.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	- know the basic principle	Written exam	50%
	of the domain;		
	- apply the course concepts		
	- problem solving		
10.5 Seminar/lab	- be able to implement	-Practical examination	50%
activities	course concepts and	-documentation	
	algorithms	-portofolio	
	- apply techniques for	-continous observations	
	different classes of		
	programming languages		

10.6 Minimum performance standards

☐ At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.

Date Signature of course coordinator Signature of seminar coordinator

20.09.23 Lect. dr. loan Lazar Lect. dr. loan Lazar

Date of approval Signature of the head of department

Prof. dr. Anca Andreica