SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.60.1	
1.6 Study programme /	Computer Science - english
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Introduction to Natural Language Processing						
2.2 Course coordinator Lecturer Ph.D. Lupea Mihaiela-Ana									
2.3 Seminar coo	ordi	nator	Lecturer Ph.D. Lupea Mihaiela-Ana						
2.4. Year of	3	2.5	6	6 2.6. Type of C 2.7 Type of optional					
study		Semester		evaluation discipline					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1 lab+
					1 pr
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6 seminar/laboratory	24
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					15
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					7
Evaluations				10	
Practical project				15	
A = 11 11 11 1 1 1 1					

3.7 Total individual study hours	77
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Formal languages, Data structures, Graphs Algorithms
4.2. competencies	Programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

Professional competencies Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Advanced ability to approach, model and solve phenomena and problems from natural language and economy using fundamental knowledge from mathematics and computer science; Ability to approach and solve complex problems using various techniques of computational intelligence; Proficient use of methodologies and tools specific to programming languages and software systems. Etic and fair behavior, committment to professional deontology Team work capabilities; able to fulfill different roles competencies Transversal Professional communication skills; concise and precise description, both oral and written, of professional results, negociation abilities; Antepreneurial skills; working with economical knowledge; continuous learning Good English communication skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To introduce the basic principles, domains and tasks in Natural Language Processing (NLP) To understand the current state of the art in order to realize an overview of a specific domain in NLP and to implement a NLP tool.
7.2 Specific objective of the discipline	Apply and use formal models (logics, grammars, parsing), statistic models (HMM), artificial intelligence algorithms and techniques to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (keyword extraction, document summarization, anaphora resolution, sentiment analysis, word sense disambiguation) in Natural Language Processing domain.

8. Content

8.1 Course	Teaching methods	Remarks
Course 1.	Exposure: description,	
Natural Language Processing (NLP): stages, domains,	explanation,	
applications.	examples, debate,	
11	dialogue	
Course 2.	Exposure: description,	
Part of speech tagging	explanation,	
WordNet and RoWordNet - knowledge structure,	examples, debate,	
semantic relations, lexical relations	dialogue	
34		
Course 3. Text representation	Exposure: description,	
	explanation,	
	examples, dialogue	
Course 4. Syntactic parsing	Exposure: description,	
- grammar rules for English - sentence level construction;	explanation, dialogue,	
- Cocke-Kasami-Yonger (CKY) algorithm;	examples.	

Course 5.	Debate, dialogue
Students' presentations of a NLP task/tool	
Course 6. Hidden Markov Model	Exposure: description,
- Markov chains, Hidden Markov Model(HMM);	explanation,
- three canonical problems associated with HMM	examples, debate,
- the forward algorithm; Viterbi algorithm.	dialogue
Course 7. Keyword extraction	Exposure: description,
- TextRank and RAKE algorithms	explanation,
	examples, dialogue
Course 8. Document summarization	Exposure: description,
- approaches based on clustering, graphs.	explanation,
	examples, dialogue
Course 9. Sentiment analysis	Exposure: description,
- opinion mining in social media	explanation, debate, examples, dialogue
- emotion analysis in literature	1 0
Course 10. Anaphora resolution	Exposure: description,
- Lapin and Lease algorithm- Mitkov's algorithm	explanation, debate, examples, dialogue
- Witkov's algorithm	examples, dialogue
Course 11. Word Sense Disambiguation	Exposure: description,
- dictionary and graph-based approaches.	explanation, dialog,
	examples
Course 12.	Debate, dialogue
Students' presentations of the practical projects	

Bibliography

- 1. J.ALLEN: Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995.
- 2. E. CHARNIAK: Statistical language learning, MIT press, 1996.
- 3. B.CARPENTER: ALE: The attribute logic engine. User's guide. Carnegie Mellon University,1994.
- 4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994.
- 5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006.
- 6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.
- 7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.
- 8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.
- 9. D.TATAR: Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2001.
- 10. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Work with WordNet, Romanian WordNet and	Documentation on	The seminar/lab is
WordNetSimilarity.	electronic platforms,	structured as 2 hours
Work with dedicated parsers and taggers	explanation, dialogue,	classes every second week
(Stanford, CST tools, Racai tools)	case studies	
2. Study of platforms and libraries from different	Documentation on	
programming languages that offer	electronic platforms,	
preprocessing functions for texts in Romanian	dialogue, case studies	
and English		

	Work with dedicated tools for keyword extraction, summarization, anaphora resolution, sentiment analysis.		
3.	Students' presentations of a NLP task/ tool.	Dialogue, debate	
4.	Identify practical tasks in Romanian NLP.	Documentation on	
	Choose the NLP task, study different	electronic platforms,	
	approaches, choose the approach that will be	dialogue, case studies	
	implemented. Search for the input data specific		
	to the chosen task.		
	Develop resources for Romanian NLP tasks		
5.	Design and implementation of the NLP tool.	Explanation, dialogue,	
	Develop resources for Romanian NLP tasks	case studies	
6.	Students' presentations of the practical projects.	Evaluation	
D.1			

Bibliography

- 1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.html
- 2. Resurse lingvistice in limba romana: www.racai.ro

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in
		methods	the grade (%)
10.4 Course	- know to write an overview of a specific NLP task	Theoretical report – presentation of a NLP task.	35%
10.5 Seminar/lab activities	- be able to implement course algorithms	Practical project - implementation of a NLP tool.	35%
	- be able to apply theoretical concepts in practical tasks	Develop resources for Romanian NLP tasks	20%
10.6 Activity	- activity during courses and labs	Active attendance	10%
10.7 Minimum perf	ormance standards		
➤ The final gra	ade to be at least 5 (from a scale of 1	to 10).	

Date	Signature of course coordinato	r Signature of seminar coordinator
27.04.2023	Lect. Ph.D. Lupea Mihaiela	Lect. Ph.D. Lupea Mihaiela
Date of approval		Signature of the head of department
		Prof. Ph.D. Dioşan Laura