SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University		
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Department of Computer Science		
1.4 Field of study	Computer Science		
1.5 Study cycle	Bachelor		
1.6 Study programme /	Computer Science (in English)		
Qualification	Computer Science (in English)		

2. Information regarding the discipline

2.1 Name of the discipline (en) (ro)		Design Patterns				
2.2 Course coordinator		Lec	Lect. PhD. Arthur Molnar			
2.3 Seminar coordi	nator		Lect. PhD. Arthur Molnar			
2.4. Year of study	3	2.5 Semester	er 6 2.6. Type of evaluation C 2.7 Type of discipline O		2.7 Type of discipline Opt	
2.8 Code of the disc	cipline	MLE8115				,

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					19
Evaluations					10
Other activities:					-

3.7 Total individual study hours	89
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

1 \	,			
4.1. curriculum	 Fundamentals of Programming 			
	Object Oriented Programming			
4.2. competencies	Good programming skills in Java or C#			

5. Conditions (if necessary)

5.1. for the course	Lecture hall with projector
5.2. for the seminar /lab	Computers with installed IDE for Java/C# development
activities	

6. Specific competencies acquired

	te competencies acquired
es	C 2.1 Identify adequate software systems development methodologies
iona	C 1.1 Proper description of programming paradigms and language specific mechanisms, and
Professional competencies	identification of semantical an syntactical differences
Pro	C4.3. Identify models and methods adequate to real life problem solving
	CT1 Apply rules to: organized and efficient work, responsibilities of didactical and scientifically
	activities and creative capitalization of own potential, while respecting principles and rules for
Š	professional ethics
Transversal competencies	CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and
ve.	
ns	develop capabilities for capitalization of knowledge, accommodation to society requirements and
[ra	communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Enhance students' understanding of software design concepts through a pragmatic approach Provide students with an environment in which they can explore the usage and usefulness of software design concepts in various business scenarios
	• Induce a realistic and industry driven view of software design concepts such as design patterns and their inherent benefits
7.2 Specific objective of the discipline	 Give students the ability to explore various object oriented programming languages. Improve the students abilities to tackle business requirements. Enhance the students understanding of business needs and business value. Provide students with insights into ways of working towards achieving high quality software.

8. Content

8.1 Course	Teaching methods	Remarks
1. OOP Principles Recap: Recap presentation that	description,	-
mostly covers main OOP principles such as	explanation,	
encapsulation, polymorphism, cohesion,	example,	
coupling, aggregation, composition	case studies,	
2. SOLID principles: base principles of high	dialogue,	-
quality software: Single responsibility, Open-	debate	

closed, Liskov substitution, Interface				
segregation and Dependency inversion				
3. Creational Patterns (Factory, Builder,		-		
Prototype, Singleton)				
4. Structural Patterns (Adapter, Bridge,		-		
Composite)				
5. Structural Patterns (Decorator, Facade,		-		
Flyweight)				
6. Structural Patterns (Proxy), Behavioural		-		
Patterns (Chain of Responsibility, Command)				
7. Behavioral Patterns (Iterator, Mediator,		-		
Memento)				
8. Behavioral Patterns (Observer, State, Strategy)		-		
9. Behavioral Patterns (Template, Visitor), Dark		-		
Patterns				
10. Architectural Patterns (MVVM, MVP, MVC),		-		
Antipatterns: common responses to recurring				
problems that are usually ineffective and risk				
being highly counterproductive				
11. Enterprise Integration Patterns		-		
Bibliography				
1. M. Fowler – Patterns of Enterprise Application	n Architecture, Aison W	esley, 2003		
2.E. Freeman, E. Freeman, B. Bates – Head First	Design Patterns, Oreilly	y, 2004		
3. E. Gamma, R. Helm, R.Johnson, J. Vlissides – Design Patterns Elements of Reusable Object-				
Oriented Software, Addison Wesley, 1995				
8.2 Seminar / laboratory	Teaching methods	Remarks		
1. OOP Recap. Introduction to laboratory		-		
activities and grading				

8.2 Seminar / laboratory	Teaching methods	Remarks
1. OOP Recap. Introduction to laboratory		-
activities and grading		
2. SOLID principles. Creational design patterns.		-
3. Structural design patterns. Checking progress		-
of laboratory activities.	Explanation,	
4. Structural design patterns. Checking progress	dialogue,	-
of laboratory activities.	case	
5. Behavioural design patterns. Checking	studies	-
progress of laboratory activities.		
6. Antipatterns. Dark Patterns. Architectural		-
Patterns.		
7. Laboratory project turn-in		-

Bibliography

- 1. M. Fowler Patterns of Enterprise Application Architecture, Aison Wesley, 2003
- 2.E. Freeman, E. Freeman, B. Bates Head First Design Patterns, Oreilly, 2004
- 3. E. Gamma, R. Helm, R.Johnson, J. Vlissides Design Patterns Elements of Reusable Object-Oriented Software, Addison Wesley, 1995

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The course exists in the study program of all major universities in Romania and abroad.
- The content of the course is considered important for advanced programming skills within the software industry.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
Seminar/lab activities	Presentation during the semester	Grading based on presentation quality,	25%
Seminar/lab activities	Laboratory project: architecture & design pattern application	thoroughness and suitability of examples selected.	25%
Colloquium	Individual presentations		50%

Minimum performance standards

- > Students must observe the standards of academic integrity.
- A minimum passing grade is defined by attaining at least 50% (5/10) points in the final grade.

Date	Signature of course coordinator	Signature of seminar coordinator
04.07.2023	Lect. PhD. Arthur Molnar	Lect. PhD. Arthur Molnar
Date of approval	Signature of the head of department	