

SYLLABUS

1. Information regarding the programme
1.1 Higher education
institution

Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science
1.3 Department Department of Computer Science
1.4 Field of study Computer Science
1.5 Study cycle Bachelor

1.6 Study programme /
Qualification

Computer Science (in English)

2. Information regarding the discipline
2.1 Name of the discipline (en)
(ro)

Design Patterns

2.2 Course coordinator Lect. PhD. Arthur Molnar
2.3 Seminar coordinator Lect. PhD. Arthur Molnar

2.4. Year of study 3 2.5 Semester 6 2.6. Type of evaluation C 2.7 Type of discipline Opt

2.8 Code of the discipline MLE8115

3. Total estimated time (hours/semester of didactic activities)
3.1 Hours per week 3 Of which: 3.2 course 2 3.3

seminar/laboratory
1

3.4 Total hours in the curriculum 36 Of which: 3.5 course 24 3.6
seminar/laboratory

12

Time allotment: hours
Learning using manual, course support, bibliography, course notes 20
Additional documentation (in libraries, on electronic platforms, field documentation) 20
Preparation for seminars/labs, homework, papers, portfolios and essays 20
Tutorship 19
Evaluations 10
Other activities: -
3.7 Total individual study hours 89
3.8 Total hours per semester 125
3.9 Number of ECTS credits 5

4. Prerequisites (if necessary)
4.1. curriculum • Fundamentals of Programming

• Object Oriented Programming
4.2. competencies • Good programming skills in Java or C#

5. Conditions (if necessary)

6. Specific competencies acquired

Pr
of

es
si

on
al

co

m
pe

te
nc

ie
s C 2.1 Identify adequate software systems development methodologies

C 1.1 Proper description of programming paradigms and language specific mechanisms, and
identification of semantical an syntactical differences

C4.3. Identify models and methods adequate to real life problem solving

T
ra

ns
ve

rs
al

co

m
pe

te
nc

ie
s

CT1 Apply rules to: organized and efficient work, responsibilities of didactical and scientifically
activities and creative capitalization of own potential, while respecting principles and rules for
professional ethics

CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and
develop capabilities for capitalization of knowledge, accommodation to society requirements and
communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content
8.1 Course Teaching methods Remarks

1. OOP Principles Recap: Recap presentation that
mostly covers main OOP principles such as
encapsulation, polymorphism, cohesion,
coupling, aggregation, composition

description,
explanation,

example,
case studies,

dialogue,
debate

-

2. SOLID principles: base principles of high
quality software: Single responsibility, Open-

-

5.1. for the course • Lecture hall with projector
5.2. for the seminar /lab
activities

• Computers with installed IDE for Java/C# development

7.1 General objective of the
discipline

• Enhance students’ understanding of software design concepts through
a pragmatic approach

• Provide students with an environment in which they can explore the
usage and usefulness of software design concepts in various business
scenarios

• Induce a realistic and industry driven view of software design concepts
such as design patterns and their inherent benefits

7.2 Specific objective of the
discipline

• Give students the ability to explore various object oriented
programming languages.

• Improve the students abilities to tackle business requirements .
• Enhance the students understanding of business needs and business

value.
• Provide students with insights into ways of working towards achieving

high quality software.

closed, Liskov substitution, Interface
segregation and Dependency inversion

3. Creational Patterns (Factory, Builder,
Prototype, Singleton)

-

4. Structural Patterns (Adapter, Bridge,
Composite)

-

5. Structural Patterns (Decorator, Facade,
Flyweight)

-

6. Structural Patterns (Proxy), Behavioural
Patterns (Chain of Responsibility, Command)

-

7. Behavioral Patterns (Iterator, Mediator,
Memento)

-

8. Behavioral Patterns (Observer, State, Strategy) -
9. Behavioral Patterns (Template, Visitor), Dark

Patterns
-

10. Architectural Patterns (MVVM, MVP, MVC),
Antipatterns: common responses to recurring
problems that are usually ineffective and risk
being highly counterproductive

-

11. Enterprise Integration Patterns -
Bibliography

1. M. Fowler – Patterns of Enterprise Application Architecture, Aison Wesley, 2003
2.E. Freeman, E. Freeman, B. Bates – Head First Design Patterns, Oreilly, 2004
3. E. Gamma, R. Helm, R.Johnson, J. Vlissides – Design Patterns Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995

8.2 Seminar / laboratory Teaching methods Remarks

1. OOP Recap. Introduction to laboratory
activities and grading

Explanation,
dialogue,

case
studies

-

2. SOLID principles. Creational design patterns. -
3. Structural design patterns. Checking progress

of laboratory activities.
-

4. Structural design patterns. Checking progress
of laboratory activities.

-

5. Behavioural design patterns. Checking
progress of laboratory activities.

-

6. Antipatterns. Dark Patterns. Architectural
Patterns.

-

7. Laboratory project turn-in -
Bibliography

1. M. Fowler – Patterns of Enterprise Application Architecture, Aison Wesley, 2003
2.E. Freeman, E. Freeman, B. Bates – Head First Design Patterns, Oreilly, 2004
3. E. Gamma, R. Helm, R.Johnson, J. Vlissides – Design Patterns Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995

9. Corroborating the content of the discipline with the expectations of the epistemic community,
professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
• The course exists in the study program of all major universities in Romania and abroad.
• The content of the course is considered important for advanced programming skills within the

software industry.

10. Evaluation
Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)
Seminar/lab activities

Presentation during the
semester

Grading based on
presentation quality,
thoroughness and suitability
of examples selected.

25%

Seminar/lab activities

Laboratory project:
architecture & design
pattern application

25%

Colloquium

Individual presentations 50%

Minimum performance standards

Ø Students must observe the standards of academic integrity.
Ø A minimum passing grade is defined by attaining at least 50% (5/10) points in the final grade.

Date Signature of course coordinator Signature of seminar coordinator

04.07.2023 Lect. PhD. Arthur Molnar Lect. PhD. Arthur Molnar

Date of approval Signature of the head of department

... …............................

